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Abstract

This paper introduces a new composite indicator of student achievement, grounded

in an axiomatic framework. Unlike conventional measures that assign equal

weight to all subjects, our index applies student- and subject-specific weights,

placing greater emphasis on areas where a student performs well. This allows

for a more individualized assessment, recognizing strengths in non-core subjects

like music, sports, or social sciences. Using test score data from 44,173 students

studying in 117 private English medium schools in rural North India, we com-

pare our indices with the traditional average score index. The results show that

a substantial proportion of students initially ranked in the bottom quartile move

up significantly under our metric, highlighting overlooked talent. The proposed

indices CS1 and CS2 markedly increase mean scores from 0.696 (under the orig-

inal index CS0) to 0.838 and nearly 1.0, respectively, while sharply reducing

standard deviations from 1.88 to 0.129 and 0.017.

1 Introduction

Can a handful of subjects provide a fair measure of a student’s potential? World over,

an overwhelming majority of scholars use test scores only in Math and English to

evaluate overall student performance. However, an increasing body of evidence sug-

gests that individuals are born with multiple abilities (Davis et al., 2011; Campbell

∗I am deeply grateful to Prof. Satya Chakravarty and Prof. Rupayan Pal for their guidance,

comments, and suggestions. I am especially thankful to Prof. S. Chandrasekhar for introducing me

to this research idea.
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and Campbell, 1999; Karaduman and Cihan, 2018; Gardner, 1993b). These include

linguistic, cognitive, visual-spatial and kinaesthetic ability. A student might perform

disastrously in Math and English but might do exceedingly well in say music, sports,

public-speaking or the social sciences. Is it plausible to construct a composite indica-

tor of student achievement that takes multiple areas into account and assigns higher

weights to subjects in which a student excels? After all, a child labeled “low perfor-

mance” might in reality possess exceptional talents that traditional measures do not

recognize.

Globally, only a select few education systems use both student-specific and subject-

specific weights to calculate performance, tailoring assessments to individual strengths.

For example, Texas1 uses a growth-based weighting approach in its Student Achieve-

ment Indicator, giving higher weights to subjects where students show significant

progress. This method recognizes individual growth rather than just raw scores, pro-

viding a personalized assessment. In New Zealand’s National Certificate of Educational

Achievement2 (NCEA), students accumulate credits in various subjects, with optional

courses and levels of difficulty. Here, students can select courses that align with their

strengths, and advanced courses carry higher weight, allowing both student-specific

and subject-specific emphasis. Similarly, some competency-based systems (like those

in Sweden) indirectly incorporate individual strengths by focusing on skill mastery

across subjects, where weights may vary based on demonstrated competencies rather

than just standardized subject marks. These systems aim to offer a more personalized

view of student achievement by valuing diverse areas of expertise. Meanwhile, in India,

the Central Board of Secondary Education3 evaluates students by averaging their top

five subject scores, ensuring a focus on their best-performing areas.

In this paper, we introduce a novel composite indicator of student performance

that comprehensively evaluates students across multiple domains, assigning personal-

ized, subject-specific weights that prioritize areas where each student excels. Using a

unique data set that encompasses the performance of 44,173 students across six sub-

jects - English, Science, Punjabi, Mathematics, Social Science, and Divinity (Behavior

and reading scriptures) - we illustrate how our indicator significantly enhances existing

1Texas Education Agency. (2024). 2024 accountability manual: Chapters 2, 4,

and 5. https://tea.texas.gov/texas-schools/accountability/academic-accountability/performance-

reporting/2024-accountability-manual-full.pdf
2New Zealand Qualifications Authority. (n.d.). Understanding NCEA.

https://www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/understanding-ncea/
3https://www.cbse.gov.in
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measures of student achievement.

Furthermore, our approach to building this indicator is grounded in an axiomatic

framework, marking the first axiomatic characterization of a composite indicator of

student achievement. In proposing these axioms, we draw inspiration from similar

advancements in the literature on inequality and poverty. For example, the function

mapping test scores to student performance, termed the achievement function, must

adhere to some basic principles. These are as follows.

First, the function that transforms the scores to their corresponding achievement

values must be bounded. A bounded function ensures that all transformed values fall

within a specific predefined range (such as [0, 1]). This facilitates the comparison

of scores by placing them on a common scale, which is particularly important when

aggregating or analyzing data across different tests or assessments, as it allows for

meaningful comparisons of achievement levels.

Second, mapping must ensure that higher scores correspond to higher achievement

values. In addition, it is important that no two different scores yield the same achieve-

ment value. These conditions imply that the achievement function must be strictly

increasing.

Third, the achievement function should be designed so that marginal changes in the

student’s score lead to only slight proportional changes in the corresponding achieve-

ment value, avoiding abrupt increases. For example, consider a function that converts

test scores from 0 to 100 into a 0-to-1 achievement scale. If a student’s score increases

from 75 to 76, the achievement value should not leap from 0.5 to 0.99. Furthermore, the

mapping should be robust to potential measurement errors, ensuring that small fluctu-

ations in scores do not translate into disproportionately large changes in achievement

values. These considerations underscore the importance of ensuring that the achieve-

ment function is continuous, providing smooth transitions without sudden spikes.

Fourth, the achievement function should prioritize early performance improvements

over later refinements. For example, if a low-performing student improves his score from

10 to 20, the corresponding increase in achievement value should exceed that observed

when a high-performing student raises his score from 85 to 95.

Fifth, the achievement mapping must be scale-invariant. A scale-invariant achieve-

ment function ensures that the relative achievement levels between students remain

consistent, regardless of how the raw scores are scaled or transformed. This means the

function depends on the relative positioning of scores, not their absolute values. For

example, if two students have scores of 50 and 75, with corresponding achievement val-

ues of 0.5 and 0.75. After scaling the scores to 0.5 and 0.75, a scale-invariant function
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would still map these to the same achievement values of 0.5 and 0.75, preserving the

proportional gaps and rankings.

Moreover, our characterization reveals that the members of the singularized family

uniquely fulfill the axioms we have established. We show that these axioms are inde-

pendent, underscoring the essential role each one plays in the characterization process.

In essence, the set of axioms we utilize is minimal-each axiom is indispensable, and

removing any one of them would undermine the integrity of the entire framework.

Our analysis shows that the proposed indicators, CS1 and CS2, diverge signifi-

cantly from the original index CS0 in both the average scores and the distributional

characteristics. The mean scores increase from 0.696 under CS0 to 0.838 with CS1,

and almost reach 1.0 with CS2. At the same time, score dispersion drops sharply, with

standard deviations falling from 1.88 (CS0) to 0.129 (CS1) and 0.017 (CS2), suggesting

a reduced performance inequality. Minimum scores also improve markedly, particularly

under CS2, where the floor rises from 0.019 to 0.825 (Table 1). Grade-wise trends (Ta-

ble 3) further reinforce these differences. While average scores decline steeply across

grades under CS0, this pattern is far less pronounced under CS1 and nearly absent

under CS2. Quartile-level analysis (Table 2) shows that the gains are largest for lower-

performing students, especially under CS2, where the average scores in Quartiles 2 to

4 approach 1.0, and even Quartile 1 reaches 0.89. Non-parametric analyses-transition

probabilities and directional rank mobility-reveal widespread upward shifts across the

performance distribution. Under CS1, students exhibit moderate upward shifts, espe-

cially from the lower quartiles (Table 4). Under CS2, nearly all students move to the

top quartile, indicating a strong uplift in relative performance (Table 5). Rank mobil-

ity estimates show gains of 10-20 percentage points with CS1, and 30–60 points with

CS2, particularly benefiting initially low performers (Table 6 and Table 7). In sum,

CS1 and CS2 not only improve average outcomes but also compress the distribution,

reduce inequality, and enhance students’ relative standing.

The remainder of the paper is organized as follows. Section 2 outlines the formal

framework for our proposed indicator along with the axioms that the indicator must

satisfy. In Section 3, we characterize the general family of indices that capture student

achievement. Section 4 presents a brief overview of existing indicators of student

achievement. Finally, Section 5 offers an empirical illustration of the family of indices

we propose, and in Section 6 we conclude.

4



2 Formal Framework

Let Yij denote student i′s standardised score in subject j where i = 1, ..., n and j =

1, ...,m and Yij’s are continuous variables. Our proposed indicator for student i is given

as under:

Ii =
1

m

m∑
j=1

ωijf(Yij)

where f : (∞,∞) −→ R+.

Here f denotes the achievement function and ωij denotes the weight assigned to student

i in subject j. The achievement function f satisfies the following assumptions.

2.1 Axioms For an Achievement Function

A.1. The achievement function f : (∞,∞) −→ R+ is strictly increasing.

Formally, for any two scores Yij and Y
′
ij

if Yij < Y
′

ij, then f(Yij) < f(Y
′

ij).

Intuitively, a higher score must lead to higher achievement. The distinction between

increasing and a strictly increasing function is crucial. To illustrate, consider a func-

tion that maps test scores from the range of 0 to 100 to an achievement scale between

0 and 1. Suppose we use an increasing function where, for scores between 0 and 50,

the achievement value remains constant at 0.5; for scores from 51 to 80, the achieve-

ment value rises linearly up to 0.8; and for scores between 81 and 100, it increases

linearly to reach 1.0. In this case, the function includes flat segments-intervals where

the achievement value does not change despite variations in scores. For instance, all

scores between 0 and 50 correspond to the same achievement value of 0.5. In contrast,

a strictly increasing function eliminates flat segments and ensures that every score cor-

responds to a unique achievement value. For example, we could define the function as

f(x) = 0.01x, where each score x maps directly to an achievement value. A score of 0

maps to an achievement of 0, 30 maps to 0.3, 50 maps to 0.5, 75 maps to 0.75, 90 maps

to 0.9, and 100 maps to 1.0. Here, every increase in score results in a distinct increase

in achievement value, ensuring no two scores share the same achievement. This strict

one-to-one mapping highlights the key feature of a strictly increasing function: every

point on the score scale uniquely contributes to the achievement value.
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A.2. The achievement function f : (∞,∞) −→ R+ is continuous.

Formally, f : (∞,∞) −→ R+ is continuous if for every z-score Y 0
ij > 0 and every

ϵ > 0, there exists a δ > 0, such that for all z-scores Yij in the domain:

| Yij − Y 0
ij |< δ ⇒| f(Yij)− f(Y 0

ij) |< ϵ.

This means that there will not be any point at which two very close scores lead to

vastly different achievement levels. Therefore, a measurement error in a score will not

lead to an abrupt change in the achievement level.

A.3. The achievement function f : (∞,∞) −→ R+ is strictly concave.

This implies that for any two distinct standardised scores say Yij, Y
′
ij and for any

λ ∈ (0, 1)

f(λYij + (1− λ)Y
′

ij) > λf(Yij) + (1− λ)f(Y
′

ij)

Thus the function places more weight on improvements at the lower end of the score

distribution and progressively less weight on improvements at the higher end. This

means that improving a score from 10 to 20 would lead to a larger jump in achieve-

ment than improving from 80 to 90.

The choice between a concave and a strictly concave function is critical. A strictly

concave function ensures that every score increase contributes progressively less to the

achievement value, with no flat or linear segments. In contrast, a function that is

merely concave can have segments where the achievement value increases at a constant

rate or even remains unchanged, reflecting lower sensitivity to score increases within

specific ranges. To illustrate, consider two types of achievement functions. In a strictly

concave function, the achievement value rises at a decreasing rate as scores increase.

For instance, a score of 30 corresponds to an achievement value of 0.5, a score of 60

maps to 0.8, and a score of 90 maps to 0.95. Here, increasing the score from 30 to 60

(a 30-point increase) raises the achievement value by 0.3 (from 0.5 to 0.8). However,

a similar 30-point increase from 60 to 90 results in a smaller gain of 0.15 (from 0.8

to 0.95). This diminishing return with higher scores demonstrates strict concavity. In

contrast, a concave but not strictly concave function may include flat segments. For

example, a score of 30 maps to an achievement value of 0.5, 60 to 0.8, 80 to 0.9, and 90

also to 0.9. While increasing the score from 30 to 60 raises the achievement value by

0.3 (from 0.5 to 0.8), moving from 60 to 80 adds only 0.1, and from 80 to 90 results in

no gain at all, as the value remains flat at 0.9. This flat segment reflects the concave
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function’s allowance for regions where achievement values stop increasing, distinguish-

ing it from strict concavity.

A.4. The achievement function f : (∞,∞) −→ R+ is scale invariant if for any

positive scalar c and any score Yij ≥ 0, f(cYij) = cαf(Yij) where α is a constant

that characterizes the function’s sensitivity to scaling. Scale invariance means that the

student’s performance remains unaffected by uniform scaling of scores. For instance,

if one student’s score is 80 and another student’s is 40, doubling both scores to 160

and 80, respectively, should not change their relative performance according to a scale-

invariant function. If the function ranks the student with 80 higher than the student

with 40 originally, this ranking should remain the same after scaling.

A.5. The achievement function f : (∞,∞) −→ R+ is differentiable.

f : (∞,∞) −→ R+ is said to be differentiable at point c ∈ A if the following limit

exists:

f ′(c) = limh−→0
f(c+ h)− f(c)

h
.

A differentiable function would ensure a smooth transition in the mapped values

across the score range. This means there would be no abrupt jumps, kinks, or breaks

in the mapping from test scores to the [0,1] scale.

3 The Characterization Theorem

Theorem 3.1. The achievement function g : [0, 100] −→ [0, 1] satisfies continuity,

scale invariance, monotonicity, and strict concavity, normalizability, and differentia-

bility if and only if g is strictly concave, scale invariant and differentiable over the

interval [0,100].

Proof. Step 1 : We know that a concave function on a convex subset of R is continuous

on the interior of its domain. If we prove right-continuity at x = 100 and left-continuity

at x = 0, we are done.

Step 2 : We first show that g is strictly increasing on [0,0]. For x ∈ (0, 100), strict

concavity implies

g(x) = g

(
x

100
.100 +

(
1− x

100

)
.0

)
>

x

100
g(100) +

(
1− x

100

)
g(0) =

x

100
.

Thus g(x) > x
100

for all x ∈ (0, 100). Suppose g is not strictly increasing, then there

exist x1 < x2 with g(x1) ≥ g(x2). By strict concavity, for t ∈ (0, 1)
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g(tx1 + (1− t)x2) > tg(x1) + (1− t)g(x2) ≥ tg(x2) + (1− t)g(x2) = g(x2).

This contradicts the existence of a non-increasing segment. Therefore g is strictly

increasing on [0, 0].

Step 3 : We now need to prove continuity at end points. We first show right continuity

at x = 0. Since g is strictly increasing, limx−→0+g(x) exists and limx−→0+g(x) ≥
g(0) = 0. Since g is strictly increasing g(x) > x

100
. As x −→ 0+,

x
100

−→ 0. Therefore

limx−→0+g(x) = 0 = g(0). Next we show left continuity at x = 100. Since g is strictly

increasing, limx−→100−g(x) exists and limx−→100−g(x) ≤ g(100) = 1. For x ∈ (0, 100),

strict concavity implies

g(x) = g
( x

100
.100 +

(
1− x

100

)
.0
)
>

x

100
.1 +

(
1− x

100
).0 =

x

100
.

As x −→ 100−, x
100

−→ 1. Therefore limx−→100−g(x) = 1 = g(100). Since g is right

continuous at x = 0 and left continuous at x = 100 therefore g is continuous at [0, 100].

Proposition 3.2. Let g : [0, 100] −→ [0, 1] with g(0) = 0 and g(100) = 1 be strictly

concave. Then g is strictly increasing.

Proof. Given g(0) = 0 and g(1) = 1, by strict concavity of g, g(θ0 + (1 − θ)) >

θg(0)+ (1− θ)g(1). Hence g(1− θ) > (1− θ). Thus for any 0 < u < 1, g(u) > u, which

implies that g(u) is increasing at 0.

Claim 1: Strict concavity of g implies that g(u) > 0 for all 0 < u < 100.

Proof. Let x1 = 0, x2 = 100. Consider x = (1 − λ)(0) + λ(100) = 100λ. By strict

concavity, g(x) = g(100λ) > (1− λ)g(0) + λg(100). Substituting the known values, we

get g(x) > λ. Since 0 < λ < 1, it follows that g(x) > 0.

Claim 2: g is strictly increasing.

Proof. Let g not be strictly increasing. This implies that there exist at least 3 points

0 < t1 < t2 < t3 < 1 such that g(t1) < g(t2) and g(t2) > g(t3). By construction we can

find 0 < δ < 1 such that t3 = δt2 + (1− δ)1. Then by strict concavity of g,

g(t3 > δg(t2) + (1− δ)g(1)

⇒ g(t3) > δg(t2) + (1− δ).
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Subtract δg(t2) from both sides. We get

g(t3)− δg(t2) > (1− δ) (3.1)

Since we assume g(t2) > g(t3), thus g(t2)− g(t3) > 0. Substitute g(t3) < g(t2) in (3.1)

we get g(t2) > 1. Hence we arrive at a contradiction because g(t2) ∈ [0, 1].

Theorem 3.3. The assumptions of scale invariance, concavity, differentiability, and

boundary conditions are independent.

Proof. By Theorem 1, strict concavity and monotonicity imply that the function is

strictly increasing and continuous between [0, 100]. Hence, we can do away with the

assumptions that the function is strictly increasing and continuous. A general class of

functions which are strictly increasing, strictly concave, normalized and differentiable

from [0, 100] −→ [0, 1] would look something like follows

g(x) =

∫ x

0
f(t)d(t)∫ 100

0
f(t)d(t)

,

where f(t) > 0, and f ′(t) < 0 and f(x) : [0, 100] −→ R+ is a positive, decreasing (i.e.,

concave) function. Examples of valid choices for f(x) are a linear decreasing function

with f(x) = a− bx, for 0 < b < a
100

, an exponential decay function with f(x) = e−kx,

k > 0, a power-based function with f(x) = 1
(x+c)r

, c > 0, r > 1 and a logarithmic decay

function, with f(x) = 1
log(bx+c)

, b, c > 0. Scale invariance implies that if we scale the

upper bound, the form of the function stays the same after rescaling. Formally, if we

define a rescaled version of g over an interval [0,M ], say

gM(x) =

∫ x

0
fM(t)d(t)∫M

0
fM(t)d(t)

then for scale invariance we require gM(x) = g
(

x
M
.100

)
. That is, the function looks

identical after rescaling, just on a different domain. Among all the functional forms

given above, we find that only the power functional form where f(t) = tβ satisfies the

scale invariance property. This leaves us with g(x) =
(

x
100

)α
as the only functional

form.

3.1 Weighing Scheme

We begin by converting raw scores into standardized z-scores, which indicate how far

above or below the subject average a student performs, relative to the spread of scores
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in that subject. This adjustment accounts for differences in subject difficulty and score

distribution, ensuring fair comparisons. As a result, a high score in a subject where

most students struggle is given due credit. In addition, by standardizing the scores

within each subject, this method avoids the problem of certain subjects having inflated

or deflated raw scores. For instance, if scores in Social Science tend to be higher across

the board than in Math, raw scores would be misleadingly skewed. Standardization

corrects for this. The conversion is done using the following formula:

zij =
Yij − µj

σj

Here Yij denotes the raw score of the student i in the subject j, µj is the mean score

for the subject j among all students, and σj is the standard deviation of the scores in

the subject j. To make sure all weights are positive, we can shift each zij by adding a

constant k so that all adjusted z scores z′ij are non-negative.

z′ij = zij + k

where k is chosen as k =| min(z) + ϵ | . Here, min(z) represents the minimum z-score

across all students and subjects, and ϵ is a small positive number (for example, 0.01) to

ensure that all adjusted z-scores z′ij are strictly positive. Using the adjusted z-scores,

the weight for a student i in subject j can be calculated as follows.

wij =
z′ij∑m
j=1 z

′
ij

Note that students who perform consistently well across all subjects will have more

evenly distributed weights, whereas those who perform outstandingly in a few sub-

jects will receive higher weights for those subjects. This balances the recognition of

generalists and specialists. Note that the weights sum up to 1.

m∑
j=1

wij =
m∑
j=1

z′ij∑m
k=1 z

′
ik

=

∑m
j=1 z

′
ij∑m

k=1 z
′
ik

= 1

The weights are normalized to sum to 1 in all subjects for each student. This allows

the weights wij to be interpreted as the relative contribution or importance of the sub-

ject j to student i′s overall achievement. In effect, students are allowed to ”specialize”

in subjects where they perform relatively better. Thus, the proposed weighing scheme

attempts to integrate relative performance (within-subject comparison) and individ-

ual strengths (across-subject emphasis) into a coherent and mathematically consistent

framework.
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3.2 Alternative Indicators of Student Achievement

Building on the above, we propose the following alternative composite indicators.

CSi1 =
J∑

j=1

wij

(
yij
100

)α

where yij is the score of student i in subject j, wij is the weight for student i

in subject j and α ∈ (0, 1) determines the senstivity of the score transformation.

As we move from α = 0 to α = 1, the transformed scores shift from being highly

compressed to closely resembling the original raw scores. With α near 0, all non-zero

scores are mapped close to 1, minimizing differences and emphasizing inclusivity. As

α increases, the function becomes less concave, and score differences begin to reflect

raw performance more sharply. At α = 1, the transformation is linear, fully preserving

the original scale and maximizing distinctions between high and low performers. Thus,

higher α values emphasize achievement gaps, while lower values compress them.

We also introduce another indicator that satisfies all the desired axioms except scale

invariance. It is defined as follows.

CSi2 =
J∑

j=1

wij(1− e−Yij)

where Yij =
yij
100

. A key advantage of this indicator over the previous one is that it does

not depend on selecting a specific value of α, making it less parameter dependent and

more robust by design.

4 A Brief Review of the Existing Indices

Globally, only a few education systems tailor assessments by incorporating student-

specific and subject-specific weights, aligning evaluation with individual strengths and

subject relevance. For example, in the Texas accountability system4, the Student

Achievement Indicator incorporates a growth-based weighting approach that rewards

academic improvement, not just proficiency. Rather than merely evaluating proficiency

levels, this method rewards schools where students demonstrate substantial year-over-

year academic improvement. For instance, if a student underperforms in reading but

4Texas Education Agency. (2024). 2024 accountability manual: Chapters 2, 4,

and 5. https://tea.texas.gov/texas-schools/accountability/academic-accountability/performance-

reporting/2024-accountability-manual-full.pdf
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shows marked progress compared to the prior year, while their math score remains con-

stant, the system assigns greater weight to the reading score in the composite achieve-

ment index. This incentivizes schools to focus not just on high-achieving students but

also on supporting those making significant academic gains, especially in under-served

areas.

Similarly, New Zealand’s National Certificate of Educational Achievement5 (NCEA)

enables students to accumulate credits across subjects and levels of difficulty, with

the flexibility to choose internal or external standards that reflect their interests and

capabilities. Higher-level or more advanced courses contribute more significantly to

overall certification, allowing both subject-specific and student-specific emphasis. For

example, a student excelling in sciences may opt for advanced standards in chemistry

and physics, thereby earning higher credits, while another may tailor their course

load around the arts or vocational training. This structure recognizes varied learner

trajectories and supports diverse strengths.

In Sweden’s competency-based education system6, assessment is focused on mas-

tery of clearly defined competencies rather than traditional subject marks. Students are

evaluated on transferable skills—such as reasoning, analysis, and problem-solving—within

and across subjects. For instance, a student who excels in mathematical problem-

solving can be credited with high achievement in that domain, even if their broader

mathematics performance is average. This model permits individual strengths to be

emphasized, and promotes a holistic understanding of learning outcomes.

Ontario’s secondary education system in Canada adopts a more individualized ap-

proach through the use of Individualized Education Plans (IEPs)7. While core cur-

riculum standards remain intact, students with exceptional needs receive tailored ac-

commodations that can influence how specific subjects or competencies are weighted

in evaluations. For example, a student with language difficulties may have oral assess-

ments prioritized over written tasks, while another showing strength in creative writing

may receive greater emphasis on that domain in grading. Although not a formal sys-

tem of weighted scores, the IEP framework allows for adaptive and growth-oriented

evaluations.

5New Zealand Qualifications Authority. (n.d.). Understanding NCEA.

https://www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/understanding-ncea/
6European Commission/EACEA/Eurydice. (2023). Assessment in single-structure education:

Sweden. Eurydice – National Education Systems. https://eurydice.eacea.ec.europa.eu/national-

education-systems/sweden/assessment-single-structure-education
7Ontario Ministry of Education. (2022). Special Education in Ontario: Kindergarten to Grade

12 – Policy and Resource Guide. https://www.ontario.ca/document/special-education-policy-and-

resource-guide
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In a similar vein, the Central Board of Secondary Education8 (CBSE), a national

education system in India governed by the Union of India, calculates students’ ag-

gregate scores based on their top five performing subjects. This approach mirrors

similar practices aimed at prioritizing students’ strengths and ensuring a fair repre-

sentation of their academic performance. For example, assume that a student ap-

pears in 6 subjects, each graded out of 100 marks. Let the marks in these sub-

jects be Mi1,Mi2,Mi3,Mi4,Mi5,Mi6 ∈ [0, 100]. Let these marks be ordered such that

Mi1 > Mi2 > Mi3 > Mi4 > Mi5. According to the best of 5 scheme, the composite

score would be given as follows.

CSi =
1

5

5∑
j=1

Mij

.

Here, j denotes the subject, while i denotes the student. Therefore, a compos-

ite score under the best of 5 scheme is calculated by sorting the 6 subject scores in

descending order, selecting the top 5 scores and taking their average.

In addition, the cumulative grade point average9 (CGPA), a measure commonly

used in many educational systems to summarize a student’s overall academic perfor-

mance across all semesters or terms, is defined as the weighted average of the grade

points obtained in all courses over multiple terms. Rather than treating all courses

equally, the CGPA accounts for both the grade achieved and the weight (or credit

hours) of each course, offering a more accurate reflection of academic achievement. It

is typically calculated on a scale—commonly out of 10 or 4, depending on the institu-

tion or country.

CGPA =

∑
(Credit Hours×Grade Points)∑

Credit Hours

where Grade Points refer to the numeric values assigned to the letter grades (e.g.,

A = 4, B = 3), and credit hours refer to the weight or importance of the course.

For example, assume that a student takes three subjects with varying credit weights

and earns different grades for each. In Subject 1, which carries 3 credits, the student

earns an A, corresponding to 4.0 grade points. In Subject 2, worth 4 credits, they

receive a B, corresponding to 3.0 grade points. In Subject 3, a 3-credit course, the

8https://www.cbse.gov.in
9Collegedunia. (n.d.). CGPA Calculator: How to calculate CGPA.

https://collegedunia.com/exams/cgpa-calculator-how-to-calculate-cgpa-articleid-2403
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student earns a C, which translates into 2.0 grade points. To calculate the CGPA, we

multiply each grade point by its respective course credit and take the weighted average:

CGPA =
(3× 4.0) + (4× 3.0) + (3× 2.0)

3 + 4 + 3
= 3.

Finally, the Intelligence Quotient10 (IQ) is also measured using some kind of weigh-

ing technique. IQ is commonly measured using standardized tests such as the Wechsler

Adult Intelligence Scale (WAIS) or the Wechsler Intelligence Scale for Children (WISC).

These tests assess different domains of cognitive ability, such as verbal comprehension,

perceptual reasoning, working memory, and processing speed. For example, a child

taking the WISC might be asked to define vocabulary words (verbal comprehension),

solve visual puzzles (perceptual reasoning), recall digit sequences (working memory),

and quickly match symbols (processing speed). Each domain yields a scaled score that

is then combined into a full scale IQ (FSIQ). To meaningfully combine these scores,

factor analysis is used. Factor analysis is a statistical method that identifies patterns

of correlation among test items and estimates how much each test (or subtest) con-

tributes to an underlying ability, such as general intelligence or g. The factor loadings

from this analysis reflect the strength of association between a subtest and the general

intelligence factor and serve as weights in computing the FSIQ. For example, consider

a student who scores 14 in Verbal Comprehension, 12 in Perceptual Reasoning, 10 in

Working Memory, and 8 in Processing Speed, each measured on a scale of 20. Based

on factor analysis conducted on a large sample, the corresponding weights (or factor

loadings) for these subtests are 0.40, 0.30, 0.20 and 0.10, respectively, reflecting the

relative contribution of each ability to overall intelligence. To compute the composite

IQ score (before standardization), multiply each score by its weight:

Raw Composite IQ Score = (14× 0.40) + (12× 0.30) + (10× 0.20) + (8× 0.10) = 12.

This raw score is then standardized to have a mean of 100 and standard deviation

of 15, typically using population norms, to produce the final Full-Scale IQ score.

5 An Empirical Illustration

5.1 Dataset

Using unique data on test scores obtained by 44,173 students (spanning grades 1 to 10)

studying in a chain of 117 rural schools in five states of North India, we compare the

10Encyclopædia Britannica. (n.d.). IQ. In Britannica.com.

https://www.britannica.com/science/IQ
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three indicators of achievement. We use student scores across six subjects: English,

Math, Punjabi (mother tongue), Science, Social Science, and Divinity.

5.1.1 About the Schools

We collect data from Akal Academies11, a chain of 117 private schools located exclu-

sively in rural areas of North India. These are English medium schools that adhere

to the National Curriculum Framework and are affiliated with the Central Board of

Secondary Education (CBSE), a national board of education in India for public and

private schools, managed by the Union Government of India. Akal Academies follow a

uniform curriculum and examination system. All students take a common exam, and

the answer scripts are graded by teachers from a randomly chosen school (belonging

to the same chain) other than the one in which a child studies.

5.2 Empirical Methodology

We compare three indicators: the first employs a simple averaging scheme, while the

other two use our proposed alternative weighting schemes. Details of all three are given

below.

CSi0 =
1

6

(yi,Math

100
+

yi,English

100
+

yi,Punjabi

100
+

yi,Science
100

+
yi,SocialScience

100
+

yi,Divinity

100

)
(5.1)

CSi1 = wi,Math

(yi,Math

100

)0.5

+ wi,English

(yi,English

100

)0.5

+ wi,Punjabi

(yi,Punjabi

100

)0.5

+

wi,Science

(yi,Science
100

)0.5

+ wi,SocialScience

(yi,SocialScience
100

)0.5

+ wi,Divinity

(yi,Divinity

100

)0.5

(5.2)

CSi2 = wi,Math(1− e−Y(i,Math)) + wi,English(1− e−Y(i,English)) + wi,Punjabi(1− e−Y(i,Punjabi))+

wi,Science(1− e−Y(i,Science)) + wi,SocialScience(1− e−Y(i,SocialScience)) + wi,Divinity(1− e−Y(i,Divinity))

(5.3)

11Akal Academies are managed by the Kalgidhar Trust - Baru Sahib, a non-profit organization that

is committed to providing quality education to rural areas of North India. The schools offer a rare

blend of modern scientific education and spiritual values. Apart from the focus of the NGO in the

field of education, it also works in areas of women empowerment, health and medical sciences, disaster

management and treatment of persons afflicted with substance abuse.
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We start by comparing the average composite scores of our proposed indices (CS1 and

CS2) with the average composite score of the original indicator (CS0). These averages

are calculated separately for each grade. We use a paired t test to assess whether

the mean differences between CS1 and CS0, as well as CS2 and CS0, are significantly

different from zero for each grade.

5.2.1 Non-parametric methods

To better understand how our proposed indicators compare with the original indi-

cator, we complement our analysis by constructing transition probabilities and rank

mobilities. These metrics are widely used to study intergenerational income or occu-

pational mobility within households (Shorrocks, 1978, Bhattacharya and Mazumder,

2011). However, only a handful of studies that analyze academic achievement make

use of these metrics12. These measures estimate the proportion of individuals who shift

from their original position when scores are recalculated using our proposed indices,

conditional on their rank in the original index. The following example illustrates. Let

us assume that there exist 10 individuals in the bottom 25 percent of the score dis-

tribution when the score is calculated using CS0. Now when the score is calculated

using CS1, 3 among those lying in the bottom quartile experience positive upward

movement, that is, they now lie within the top 75 percent of the score distribution.

Therefore, this would imply that the upward mobility for students is 30 percent.

More formally, transition probability matrices are constructed as follows. Corre-

sponding to each composite indicator, the scores are partitioned into 4 quartiles - less

than or equal to 0.25 (quartile 1) greater than 0.25 and less or equal to 0.5 (quartile

2), greater than 0.5 and less than or equal to 0.75 (quartile 3), and greater than 0.75

and less than or equal to 1 (quartile 4). The total number of students corresponding

to each quartile is then calculated. Next, each element of the transition probability

matrix is constructed by calculating different ratios. For example, if we wish to know

the probability that individuals will transition from quartile 1 to quartile 2 when com-

posite scores are calculated using CS0 versus when scores are calculated using CS1, we

will have to divide the number of individuals in quartile 2 using CS1 conditional on

them being in quartile 1 using CS0 with the number of individuals in quartile 1 using

CS0. Movements from a lower quartile towards a higher quartile are termed upward

transition probabilities, while movements from higher quartile towards lower quartiles

are termed downward transition probabilities. Movements within the same quartile are

12Examples include McDonough, 2015; Ellison and Swanson, 2023.
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termed staying probabilities. Assuming that the scores are divided into k partitions,

the transition matrix corresponding to any two indices, CS0 and CS1 is calculated as

follows.

πCS0,CS1 =

πCS0,CS1

11 ... ... πCS0,CS1

1k

... ... ... ...

πCS0,CS1

1k ... ... πCS0,CS1

kk


Each element πCS0,CS1

kl of the matrix (K × K) denotes the fraction of children in

partition k using CS0 who are in partition l using CS1. πCS0,CS1

kl denotes the staying

probability if k = l, the upward transition probability if k > l and the downward

transition probability if k < l.

πCS0,CS1

kl =
Pr(yCS0 ∈ k, yCS1 ∈ l)

Pr(yCS0 ∈ k)
k, l = 1, ...K.

Despite being instructive, transition probabilities do not take into account move-

ments within a partition or a quartile. That is, to be qualified as mobile, individuals

only need to cover the distance between their position and the upper bound of their

quartile. These upper and lower bounds corresponding to each partition are arbitrary

(or non-unique). It is possible that an individual’s performance, as measured by CS0,

lies close to the lower bound of a given partition, and although it improves significantly

when assessed using CS1, it still remains within the same partition. In contrast, an-

other individual near the upper bound of the same quartile might gain less than the

first person but still cross the threshold and move into the next quartile. Thus, the lat-

ter individual, despite experiencing lesser gains, is said to made an upward movement,

while the former individual is said to have stayed in the same quartile – despite mak-

ing larger gains. This implies that individuals close to the lower bound have a lesser

likelihood of upgrading their performance than those close to the upper bound. This

suggests that the performance gains experienced by individuals are only comparable if

their initial position is taken into account.

Therefore, we employ an improved version of transition probability matrix that

takes into account an individual’s position in the dataset - directional mobility. Here, a

student is said to have made ‘upward movement’ (downward movement) if the difference

in performance between the two indicators (CS1−CS0) lies beyond certain thresholds

γ. Since γ is the same for all, therefore, everyone is equally likely to be upwardly

or downwardly mobile. Formally, the following expression is used to calculate the

proportion of individuals who experience upward mobility relative to a given value of

γ.
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θCS0,CS1

k,γ =
Pr(CS0 ∈ k, (CS1 − CS0) ≥ γ)

Pr(CS0 ∈ k)

Similarly, the proportion of people who experience downward mobility is calculated

as follows.

θCS0,CS1

k,γ =
Pr(CS0 ∈ k, (CS1 − CS0) ≤ γ)

Pr(CS0 ∈ k)

Note that γ ∈ (−∞,∞). For positive values of γ, we focus exclusively on upward

mobility, while for negative values, we examine downward mobility. For γ = 0, we

consider both upward and downward mobility13.

5.3 Results

The comparison between our proposed indicators-CS1 and CS2-and the original index

CS0 reveals considerable differences in both central tendencies and the spread of stu-

dent performance scores (Table 1). On average, student scores are markedly higher

when evaluated using the new indicators: the mean increases from 0.696 under CS0 to

0.838 for CS1, and nearly reaches its upper bound under CS2 at 0.998. At the same

time, the standard deviation shrinks dramatically: from 1.88 under the original index

to just 0.129 with CS1 and further down to 0.017 with CS2, highlighting a substan-

tial compression of the distribution and suggesting reduced disparities in performance.

This pattern is also reflected in the minimum scores: While CS0 records a minimum

of 0.019, the floor rises significantly to 0.135 under CS1 and 0.825 under CS2..

In Table 3 we present grade wise average scores across the three indices. It should

be noted that while CS2 significantly improves the student’s performance, CS1 only

yields a modest improvement compared to the original indicator. This pattern is ev-

ident in columns 4 and 5, which show the differences in mean scores between CS2

and CS0, and between CS1 and CS2, respectively. The gap between CS2 and CS0

increases noticeably with each successive grade, while the difference between CS0 and

CS1 increases only marginally. Importantly, these results do not suggest a worrying

trend in student performance. Although CS0 shows a steep decrease in average scores,

from 0.845 in Grade 1 to 0.527 in Grade 10, the decline is considerably less severe when

performance is evaluated using CS1 and CS2. Specifically, the average score based on

CS1 declines from 0.923 in Grade 1 to 0.7595 in Grade 10, while scores based on CS2

13For γ = 0 only the inequality signs < and > are considered.
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remain consistently high, staying within the range of 0.9 to 1 across all grades.

Next, we compare mean scores across indices by quartile (Table 2). To do this,

we divide the distribution of scores under CS0 into four quartiles: Quartile 1 (0-0.25),

Quartile 2 (0.25-0.50), Quartile 3 (0.50-0.75) and Quartile 4 (0.75-1). For each quartile,

we then compute the average score of individuals based on our proposed indicators.

Using CS0, the mean scores for Quartiles 1 through 4 are 0.070, 0.419, 0.637, and

0.860, respectively. With CS1, these means increase to 0.252, 0.680, 0.817, and 0.931,

showing substantial improvements, especially in the lower quartiles. The uplift is most

pronounced for lower-performing students, while the differences become smaller in the

higher quartiles. Under CS2, the transformation is even more striking: the mean score

for Quartile 1 jumps to 0.89, and for Quartiles 2, 3, and 4, the averages are all close to

1. Among the three indices, CS1 is the most conservative in adjusting scores, offering

moderate improvements while maintaining greater differentiation across performance

levels.

We then supplement our analysis with non-parametric techniques that examine

the proportion of individuals located at various points in the performance distribution,

based on our proposed indices, conditional on their placement within a given percentile

range according to the original indicator. To this end we construct transition probabil-

ities and directional rank mobilities. The results of the transition probability matrices

are presented in Table 4 and Table 5. We start by comparing CS0 with CS1 (Table

4). We find that 15.68 percent of students who originally fell into quartile 1 based

on CS0 move to quartile 2 when their score is calculated using CS1. Similarly, 16.46

percent of students who were in quartile 1 based on CS0 move to quartile 3 under

CS1. Interestingly, about 95 percent of the students who were in quartile 2 transition

to quartile 3. Furthermore, 92.69 percent of the individuals initially in quartile 3 move

to quartile 4, while 7.31 percent remain in quartile 3. Next, we compare CS0 with

CS2. The results are presented in Table 5. Interestingly, using CS2, we find that all

students shift toward the top quartile (Q4), regardless of their initial position in the

distribution. This paints a highly encouraging picture of overall performance.

Tables 6 and 7 present our estimates of the directional rank mobility matrices,

comparing CS0 with CS1 and CS0 with CS2 respectively. We begin by comparing CS0

with CS1. The results indicate that all students originally in Quartiles 1 and 2 under

CS0 experience a uniform upward shift of 20 percentage points in their performance

rankings when assessed using CS1. Among those initially in Quartile 3, all show a

gain of 10 percentage points, while 30 percent achieve a more substantial increase of
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20 percentage points. For students originally placed in Quartile 4, 26 percent register

a modest gain of 10 percentage points. Next, we turn to the comparison between CS2

and CS2. Here, the upward mobility is even more pronounced. All students in Quartile

1 under CS0 experience a gain of 30 percentage points when recalculated using CS2.

Likewise, every student in Quartile 2 records a gain of 40 percentage points, with 31

percent of them achieving an even greater improvement of 60 percentage points.

6 Conclusion

This paper presents an axiomatic construction of a novel composite indicator to mea-

sure student achievement. Unlike conventional metrics that aggregate individual scores

by assigning equal weights to all subjects, our index introduces student-specific and

subject-specific weights, giving greater emphasis to subjects in which a student ex-

cels. This approach acknowledges that a student who underperforms in subjects like

Mathematics and English may still demonstrate exceptional abilities in areas such as

music, sports, public speaking, or social sciences. We propose a composite measure

that accounts for these diverse strengths, offering a more holistic assessment of student

achievement. To evaluate the effectiveness of our proposed index, we employ a unique

dataset comprising 44,173 students from a network of English-medium private schools

in rural North India. We compare the traditional aggregate score with our proposed

index by analyzing mean scores across various percentile groups.

Our analysis reveals that the proposed indicators, CS1 and CS2 , substantially dif-

fer from the original index CS1 in both average performance levels and distributional

characteristics. Overall, mean scores increase notably under the proposed indicators:

from 0.696 in CS0 to 0.838 in CS1, and nearly reaching 1 under CS2. Alongside this,

score dispersion decreases significantly, indicating a reduction in performance inequal-

ity. The standard deviations drop from 1.88 in CS0 to 0.129 and 0.017 in CS1 and

CS2, respectively. Minimum scores also rise sharply, particularly under CS2, where

the lowest score is 0.825 compared to 0.019 in the original index. Non-parametric

analysis of transition probabilities and directional rank mobility matrices further con-

firms these patterns. A notable proportion of students shift to higher performance

quartiles when evaluated using the proposed indicators. Under CS1, students from

lower quartiles show modest but widespread upward movement. In contrast, under

CS2, virtually all students transition into the top quartile, signaling a dramatic boost

in performance rankings. Directional rank mobility estimates show consistent gains

of 10-20 percentage points under CS1, while CS2 generates even larger shifts of 30 to
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60 percentage points, especially for initially low-performing students. Together, these

findings indicate that the proposed indicators not only improve average performance

levels but also compress the distribution, thus reducing inequality and improving stu-

dent relative rankings. Crucially, they reveal that students traditionally labeled as

low-performing may not, in fact, be underachievers when their individual strengths

and subject-specific proficiencies are appropriately recognized. This underscores the

need to revisit our assessment frameworks.
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Table 1: Summary Statistics of the Proposed Indices

Index Mean SD Min Max N

CS0 0.6955 0.1884 0.0185 1 44,173

CS1 0.8379 0.1291 0.1347 1 44,173

CS2 0.9976 0.0166 0.8246 1 44,173

Notes: Column 2 reports the mean score for each indi-

cator, Column 3 presents the corresponding standard

deviation, while Columns 4 and 5 show the minimum

and maximum values of the indicator, respectively.

Table 2: Quartile-wise Mean Scores Across All Indicators

Quartile CS0 CS1 CS2 Diff1 Diff2

1 0.070 0.252 0.899 0.182*** 0.829***

2 0.419 0.680 0.999 0.261*** 0.580***

3 0.637 0.817 1.000 0.180*** 0.363***

4 0.860 0.931 1.000 0.072*** 0.140***

Notes: Columns 2, 3, and 4 report the mean scores based

on CS0, CS1, and CS2,respectively, while Columns 5 and

6 present differences between CS2 and CS0 and CS1 and

CS0 respectively.
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Table 3: Grade-wise Mean Scores Across All Indicators

Grade CS0 CS1 CS2 Diff2(CS2 − CS0) Diff1(CS1 − CS0)

1 0.8545 0.9230 0.9978 0.1433*** 0.0685***

2 0.8369 0.9131 0.9975 0.1606*** 0.0762***

3 0.6998 0.8400 0.9976 0.2977*** 0.1402***

4 0.6861 0.8296 0.9965 0.3104*** 0.1435***

5 0.7161 0.8508 0.9984 0.2823*** 0.1347***

6 0.6658 0.8169 0.9972 0.3314*** 0.1511***

7 0.6938 0.8351 0.9975 0.3037*** 0.1414***

8 0.7173 0.8481 0.9973 0.2801*** 0.1308***

9 0.5722 0.7724 0.9985 0.4263*** 0.2002***

10 0.5271 0.7595 0.9970 0.4699*** 0.2324***

Notes: Columns 2, 3, and 4 report the mean scores based on CS0, CS1, and CS2,

respectively, while Columns 5 and 6 present the differences between CS2 and CS0 and

CS1 and CS0 respectively.
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Table 4: Transition Probabilities (CS0 & CS1)

Comparison of CS0 and CS1

Quartile Q1 Q2 Q3 Q4 Total

Q1 67.86 15.68 16.46 0.00 100.00

Q2 0.00 0.00 95.81 4.19 100.00

Q3 0.00 0.00 7.31 92.69 100.00

Q4 0.00 0.00 0.00 100.00 100.00

Total 1.40 0.32 14.87 83.41 100.00

Notes: Each element πCS0,CS1

kl of the matrix represents the fraction

of students in partition k using CS0 who are in partition l using CS1.

Table 5: Transition Probabilities (CS0 & CS2)

Comparison of CS0 and CS2

Quartile Q1 Q2 Q3 Q4 Total

Q1 0.00 0.00 0.00 100.00 100.00

Q2 0.00 0.00 0.00 100.00 100.00

Q3 0.00 0.00 0.00 100.00 100.00

Q4 0.00 0.00 0.00 100.00 100.00

Total 0.00 0.00 0.00 100.00 100.00

Notes: Each element πCS0,CS2

kl of the matrix represents the fraction

of students in partition k using CS0 who are in partition l using CS2.
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Table 6: Directional Rank Mobilities (CS0 & CS1)

Proportion of Students with Score Gains

Quartile γ ≥ 0.1 γ ≥ 0.2 γ ≥ 0.3 γ ≥ 0.4

Q1 (N=964) 1.00 0.30 0.14 0.06

Q2 (N=5294) 1.00 1.00 0.08 0.01

Q3 (N=18663) 1.00 0.29 0.00 0.00

Q4 (N=19252) 0.25 0.00 0.00 0.00

Notes: Each element θCS0,CS1

k,γ of the matrix represents the pro-

portion of individuals who experience upward mobility relative

to the given value of γ and conditional on being in the quartile

k of the composite score distribution based on CS0.

Table 7: Directional Rank Mobilities: (CS0 & CS2)

Proportion of Students with Score Gains

Quartile γ ≥ 0.2 γ ≥ 0.4 γ ≥ 0.6 γ ≥ 0.8 γ ≥ 0.850 γ ≥ 0.9

Q1 (N=964) 1.00 1.00 1.00 0.80 0.06 0.01

Q2 (N=5294) 1.00 1.00 0.34 0.00 0.00 0.00

Q3 (N=18663) 1.00 0.33 0.00 0.00 0.00 0.00

Q4 (N=19252) 0.24 0.00 0.00 0.00 0.00 0.00

Notes: Each element θCS0,CS2

k,γ of the matrix represents the proportion of individuals who

experience upward mobility relative to the given value of γ and conditional on being

in the quartile k of the composite score distribution based on CS0.
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Segovia-González, M. M., & Contreras, I. (2023). A composite indicator to compare

the performance of male and female students in educational systems. Social

Indicators Research, 165 (1), 181–212.

Shearer, B. (1994). The midas: A professional manual. MI Research; Consulting.

Shearer, C. B., & Jones, J. A. (1994). The validation of the hillside assessment of

perceived intelligences (hapi): A measure of howard gardner’s theory of multiple

intelligences.

Shorrocks, A. F. (1978). The measurement of mobility. Econometrica: Journal of the

Econometric Society, 1013–1024.

Snyder, R. F. (1999). The relationship between learning styles/multiple intelligences

and academic achievement of high school students. The high school journal,

83 (2), 11–20.

Verbunt, P., & Rogge, N. (2018). Geometric composite indicators with compromise

benefit-of-the-doubt weights. European Journal of Operational Research, 264 (1),

388–401.

27


	A_composite_Indicator_of_Student_Achievement_8april.pdf
	Introduction
	Formal Framework
	Axioms For an Achievement Function

	The Characterization Theorem
	Weighing Scheme
	Alternative Indicators of Student Achievement

	A Brief Review of the Existing Indices
	An Empirical Illustration
	Dataset
	About the Schools

	Empirical Methodology
	Non-parametric methods

	Results

	Conclusion


