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Abstract 

 

We examine how weather variation influences economic activity through its impact on systemic risk in 

financial markets, an underexplored channel for a developing economy like India. Using a semi-parametric 

generalized additive model, we analyze weather effects on monthly systemic risk data from 898 listed Indian 

firms from January 2005 to November 2022. Our findings confirm that weather variation significantly 

impacts Indian systemic risk. However, we observe that these effects are reliably estimated when we 

consider decomposed weather— expected and anomaly—instead of aggregate weather variables. We find 

that a rise in temperature (precipitation) increases (decreases) systemic risk. Unlike existing studies, this 

paper highlights that the impact is more pronounced when we observe a rise in weather anomaly compared 

to its expected counterpart. Moreover, these weather effects vary across seasons and broad industry clusters. 

Supply chain disruptions, energy demand shifts, and credit supply constraints emerge as key mechanisms 

linking weather fluctuations to systemic risk. Finally, we show that weather-related systemic risk can predict 

future economic downturns, offering early warning signs for climate risk management. 
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1. Introduction

The heavy rains in August 2018 in a south Indian state, Kerala, provided considerable threat of
non-performing loans to the Federal Bank which has 47% of its branches located in affected re-
gion1. During the period from July to September, the Indian stock market observed a drop of ≈
23% in stock returns for the bank and an increase in the systemic risk conditional on Federal Bank
alone by ≈ 7%2. The systemic risk is the possibility that instability in a single institution could rip-
ple out and upset the whole financial system. This weather event in Kerala shows the possibility of
a localized weather event influencing the systemic risk in the entire stock market. While the Kerala
floods represent an extreme case, the underlying mechanism may also broadly apply to variations
in temperature and precipitation. Early studies for Europe (Tzouvanas et al., 2019), China (Song
and Fang, 2023; X. Wu et al., 2023) and the USA (Curcio et al., 2023) also demonstrate that varia-
tions in temperature and precipitation (extreme or moderate) increase the systemic risk in the stock
markets. However, these limited studies do not account for the differential impact of expected
weather vis-à-vis weather anomaly (defined as decomposed weather variables)3. Furthermore, to
our knowledge, no research has yet examined this relationship in India—an emerging economy
experiencing an annual stock market capitalization growth of approximately 6% in the last two
decades. Accordingly, the current study examines the differential impact of weather variations on
systemic risk in the Indian stock market.

While examining the impact of weather variations on systemic risk, we shed light on three im-
portant aspects not explored in previous literature. Firstly, we highlight the advantages of using
decomposed weather variables over aggregate ones while estimating systemic risk in Indian stock
markets. Secondly, we capture the asymmetric effect on systemic risk in stock markets given
expected weather vis-à-vis weather anomaly. Finally, we explore the heterogeneous impact of
weather on systemic risk across different seasons and all seven broad clusters (consumer, manu-
facturing, health care, energy, technology, finance, and others).

The focus is on systemic risk as it has taken particular importance in predicting economic down-
turns because of the economic recession that succeeded the global financial crisis of 2007–2009.
Various systemic risk measures have been developed and are established as good proxies for early
signalling for future economic downturns (Allen et al., 2012; Chen et al., 2020; Giglio et al.,

1https://www.forbesindia.com/article/leaderboard/flood-impact-federal-bank-raises-red-flag/51113/1
2Author’s computation
3Stock market reaction to anticipated and unanticipated news has been studied for monetary policy (Bernanke &

Kuttner, 2005), government policy (Pastor & Veronesi, 2012), unemployment news (Gonzalo & Taamouti, 2017), and
company announcements (Purda, 2007).
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2016; Li et al., 2024). With the growing literature on the significant effect of weather variations
on macroeconomic outcomes (Burke et al., 2015; Damania et al., 2020; Dell et al., 2012; Kotz
et al., 2022), having early signals of the effect of weather variations on future economic activities
can prove helpful. Consequently, this study also examines whether systemic risk from weather
variations in financial markets can predict future economic downturns.

We consider a systemic risk measure, ∆CoVaR, as proposed by Adrian and Brunnermeier (2016)
and compute monthly ∆CoVaR for 898 firms listed on Indian stock exchanges. We also compute
the 1995-year economic activity weighted temperature and precipitation variables from grid-level
monthly data obtained from Harris et al. (2020). Further, given that markets may react differ-
ently to expected as compared to unexpected fluctuations, we decompose weather variables into
expected and anomaly components using ensemble empirical mode decomposition (Z. Wu and
Huang, 2009). Finally, we estimate the impacts of weather variations on systemic risk—for January
2005 to November 2022—by employing a Generalized Additive Model (GAM), a semi-parametric
econometric tool, differing from the parametric techniques.

The GAM estimates for both models—aggregate or decomposed weather—indicate the signifi-
cance of weather variations in explaining the systemic risk in Indian financial markets. However,
crucial differences in estimates exist in the interpretation and magnitude of these weather effects.
We demonstrate that aggregate weather GAM misestimates the positive effect on systemic risk
through precipitation fluctuation and no effect from temperature fluctuation. Contrary to this, the
decomposed weather GAM demonstrate that a positive temperature variation increases systemic
risk, whereas a positive precipitation variation decreases it. In addition, the aggregate weather
model fails to capture the interplay between temperature and precipitation like the decomposed
one. These findings point to the potential erroneous estimation due to aggregate weather.

Our findings also reveal that a rise in the systemic risk of a 0.1◦C rise in expected temperature
(0.01 percentage points or pp) is significantly lower than a rise in temperature anomaly (0.20 pp).
Similarly, a fall in the systemic risk for a 10 mm increase to expected precipitation (0.01 pp) is sig-
nificantly lower than one to precipitation anomaly (0.03 pp). These results indicate the asymmetric
effect of weather variations. Furthermore, these asymmetric effects vary across seasons and broad
industry clusters. We observe that the asymmetric effect is mainly driven by the monsoon season.
While decomposed temperature variation has a homogeneous asymmetric effect across broad in-
dustry clusters, heterogeneity is observed for the decomposed precipitation variation, especially
for the energy, finance, technology, and healthcare clusters.
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We explain these results by examining two potential channels through which weather variations
impact firms’ future cashflows and investor decision-making—changes in economic conditions
and uncertainty. Specifically, we analyze the impact of decomposed weather variations on macroe-
conomic time series data of power demand growth, year-on-year inflation, and credit supply growth
using an autoregressive model with generalized autoregressive conditional heteroskedasticity terms.
Our findings indicate that both expected and anomaly weather fluctuations affect the mean power
demand growth and credit supply growth, suggesting a potential impact on firms’ future cashflows.
Additionally, we observe that weather variations influence the volatility of wholesale inflation rates
and credit supply growth, which may, in turn, affect investor decision-making.

In our final part, we illustrate the significance of these weather-induced systemic risks in pre-
dicting future economic activity, proxied by the mean industrial production index. This analysis
reveals that weather-induced systemic risk demonstrates a weak to negligible short-term forecast-
ing power (months from 1 to 6) but a more significant potential to foresee economic downturns
in the medium to long run (months from 7 to 12). Systemic risk in Pre-monsoon and Winter
seasons predicts short- to medium-run future economic downturns but has no predictive capacity
during Monsoon and Post-monsoon seasons. In the case of cluster-wise analysis, while we observe
medium to longer horizon forecasting ability for most clusters, the weather-induced systemic risk
from the healthcare cluster can forecast from shorter to longer horizons. In contrast, the weather-
induced systemic risk from the energy cluster can only forecast longer periods.

1.1. Contribution to existing literature

With the above mentioned findings, we contribute to the existing literature in the following ways.
First, this study contributes to the limited literature on the impact of weather variations on systemic
risk in financial markets by considering the Indian financial market as its case study. We find that
only expected temperature fluctuation demonstrates an inverted-U-shaped relation with systemic
risk, unlike Tzouvanas et al. (2019), which has shown this relation with aggregate temperature
in the case of the European region. We also show an asymmetric effect between expected and
anomaly weather variation, which was considered in isolation by Curcio et al. (2023), Song and
Fang (2023), Tzouvanas et al. (2019), and X. Wu et al. (2023). We have also considered the inter-
active effect between temperature and precipitation, which is only considered in the case of China
by X. Wu et al. (2023). Finally, we introduce a unique but flexible semiparametric econometric
technique of generalized additive model deviating from the parametric assumption considered in
previous studies.
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Second, our paper highlights climate risk pricing in Indian financial markets and thus touches
upon existing climate finance literature. Venturini (2022) discusses the financial consequences of
weather variations for asset pricing. Using asset pricing models, Balvers et al. (2017) and Gre-
gory (2024) note that temperature shock raises the cost of equity for US firms and has a negative
factor loading on risk premiums. Huynh et al. (2020) find that in the case of Chinese firms, firms
afflicted by drought pay higher equity capital costs. Our findings of the asymmetric effect of ex-
pected vis-á-vis anomaly weather across seasons and broad industry clusters add to climate pricing
understanding.

Third, Cao and Wei (2004), Kamstra et al. (2003), Kang et al. (2010), Kathiravan et al. (2021),
and Saunders (1993) show that weather variations like changes in temperature, cloud-cover, sea-
sonal affective disorder, or extreme weather affect investor’s mood, which influences stock returns.
However, as pointed out by Venturini (2022) and demonstrated by Jacobsen and Marquering (2008)
and Yan et al. (2022), weather variations alter investor mood and economic conditions to influence
stock returns. Our mechanism analysis provides evidence of this conundrum by indicating that
weather variations affect the mean and volatility of power demand growth, inflation, and credit
supply growth.

Finally, we provide a new perspective to understand the impact of weather variations on economic
outcomes. Existing global (Burke et al., 2015; Dell et al., 2012; Kalkuhl and Wenz, 2020) and
regional studies (Kumar and Maiti, 2024b; Mendelsohn, 2014) conclude that temperature shocks
hinder economic growth due to negative effects on investment, labour productivity, human health,
and agricultural and industrial output. A precipitation shock significantly affects the overall eco-
nomic growth in agriculture (Damania et al., 2020; Kotz et al., 2022). Indian studies also show that
temperature shocks reduce economic growth (Jain et al., 2020; Kumar and Maiti, 2024a; Sandhani
et al., 2023), total factor productivity (Kumar and Maiti, 2024a), agricultural yield (Birthal et al.,
2021; Pattanayak et al., 2021; Taraz, 2018), labour productivity (Colmer, 2021; Somanathan et al.,
2021), and increases suicides (Carleton, 2017). On the other hand, a positive precipitation shock is
favourable for agricultural output (Auffhammer et al., 2006; Birthal et al., 2021; Mitra, 2014), but
increasing precipitation volatility has a detrimental effect on Indian agriculture (Pattanayak et al.,
2021). While these studies demonstrate a direct impact of weather shocks on economic outcomes,
our forecasting analysis points out indirect impact channels through financial markets. Our results
indicate that weather variations create financial instability, which affects Indian economic condi-
tions.

The rest of the paper proceeds as follows. Section 2 summarises the data and computation of
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systemic risk and weather decomposition. Section 3 performs a preliminary analysis and devel-
ops the hypotheses of the study. Section 4 tests these hypotheses and provides results for the
mechanism analysis. The results on forecasting ability are presented in Section 5, and Section 6
concludes the paper.

2. Data and variable construction

The firm data needed to calculate systemic risk and weather-related data are all detailed in this
section.

2.1. Computation of Systemic risk (∆CoVaR)

We use the Datastream database to retrieve the monthly share prices (Sit) for 1596 firms denoted
by ‘i’ and month-year by ‘t’. These firms are listed on the Bombay Stock Exchange and National
Stock Exchange (major stock exchanges in India). For each firm, the monthly returns are computed
as rit = ln

(
Sit

Sit−1

)
. Firms are filtered out to ensure that every firm has 90% observations to compute

systemic risk. We, therefore, have a dataset covering 898 firms from February 1999 to July 2023.
The descriptive statistics of these firms in various sectors are provided in Table A1 of Appendix A1.

We follow the three-step empirical method of ∆CoVaR (Adrian & Brunnermeier, 2016) to compute
the systemic risk. Using the quantile regression, the Value at Risk (VaR) and Conditional Value at
Risk (CoVaR) for the firm and the system, respectively, is calculated as follows:

X i
t = α

i
q + γ

i
qMt−1 + ε

i
q,t

XSystem|i
t = α

System|i
q + γ

System|i
q Mt−1 +β

System|i
q X i

t + ε
System|i
q,t

(1)

where Mt−1 refers to lagged monthly state variables representing a vector of seven macroeconomic
state variables, as considered by Verma et al. (2019). It includes short-term liquidity (the differ-
ence between the 3-month MIBOR and the 3-month treasury bill rate), changes in the 3-month
treasury bill rate, yield changes (the difference between the 10-year government bond rate and the
3-month treasury bill rate), credit spread (the difference between the commercial paper rate and
the 3-month treasury bill rate), prime lending rate, monthly market returns, and volatility. Panels
(a)–(j) of Figure 1 illustrate the state variables retrieved from the CEIC database. We define the
loss of firm (X i

t =−rit) and market (XSystem|i
t =−rmkt,t) and compute VaR and CoVaR at q = 99%

as the predicted value of Equation (1), as shown below:
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VaRi
q,t = α̂

i
q + γ̂

i
qMt−1

CoVaRi
q,t = α̂

System|i
q + γ̂

System|i
q Mt−1 + β̂

System|i
q VaRi

q,t

(2)

where, VaRi
q,t and CoVaRi

q,t are the predicted VaR and CoVaR values, respectively. α̂ , β̂ , and γ̂

represent the quantile regression coefficient estimates from Equation (1). Finally, we compute the
systemic risk (∆CoVaRi

q,t) conditional on the failure of a firm using Equation (3).

∆CoVaRi
q,t = CoVaRi

q,t −CoVaRi
50,t = β̂

System|i
q

(
VaRi

q,t −VaRi
50,t

)
(3)

Panels (h)–(k) of Figure 1 show the mean and standard deviation of VaR and ∆CoVaR for the pe-
riod. Panel (j) of Figure 1 shows three noticeable upward spikes and one downward spike. The
initial upward rise in 2008-09 corresponded to the start of the global financial crisis period. It is fol-
lowed by a downward spike in 2010, signalling that Indian financial markets have recovered from
the global financial crisis. The second upward spike in 2019 reflects the Indian financial crisis,
which was triggered by high-profile defaults by non-banking financial companies, mainly Infras-
tructure Leasing and Financial Services and Dewan Housing Finance Ltd. The third upward spike
highlights the stock market’s systemic risk following India’s first COVID-19 lockdown. Accord-
ingly, we conclude that the systemic risk computed for Indian financial markets using the ∆CoVaR
method fairly represents a risk in Indian financial markets.

2.2. Weather variables

We obtained grid-level monthly temperature and precipitation from version 4.08 of the database
given by Harris et al. (2020) from October 1994 to July 2023. While average monthly weather data
for India can be analyzed, we use economic activity-weighted monthly total temperature and pre-
cipitation data for India in our calculations. With this weighting, we aim to capture the dispersion
of firms and investors across India who are the agents of stock markets.

Furthermore, weather shocks may have varying impacts across regions in India (Jain et al., 2020;
Kumar and Maiti, 2024a; Sandhani et al., 2023), which can be accounted for by weighting the
weather by the region’s economic activity. Accordingly, we use district-level economic activity
data from Nordhaus (2006) of the year 1995 to avoid endogeneity and generate 1995-year eco-
nomic activity weighted monthly temperature (Tt) and precipitation (Pt) data.

Several reasons, such as seasonal variations, anomalies, extreme weather, and forecasted weather,
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Figure 1: Summary statistics of systemic risk variables: Macroeconomic state variables, Value
at Risk (VaR) and systemic risk (∆CoVaR) are plotted against monthly time series. Plots (a)–(g)
portray the macreconomic state variables as suggested by Verma et al. (2019). Plot (h)–(k) are
computed accordingly to Equation (3).
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cause weather changes. The knowledge about weather changes is complex due to the range of
short- and long-term effects of various factors. To determine the differential impact of each ex-
pected and anomaly weather change, we break down the weighted monthly temperature (Tt) and
precipitation (Pt) into three categories: trend, seasonal, and anomaly. We make use of ensemble
empirical mode decomposition (Z. Wu and Huang, 2009) and bifurcate the weather variables as
follows:

Tt︸︷︷︸
Aggregate temperature

= Ttrend,t +Tseasonal,t︸ ︷︷ ︸
Expected temperature

+ Tanomaly,t︸ ︷︷ ︸
Anomaly temperature

Pt︸︷︷︸
Aggregate precipitation

= Ptrend,t +Pseasonal,t︸ ︷︷ ︸
Expected precipitation

+ Panomaly,t︸ ︷︷ ︸
Anomaly precipitation

(4)

where trend (Ttrend,t and Ptrend,t) and seasonal (Tseasonal,t and Pseasonal,t) component of weather are
summed up to denote the expected weather (Texpected,t and Pexpected,t) whereas the anomaly part
(Tanomaly,t and Panomaly,t) denote the unexpected weather4. The aggregate weather (Tt and Pt), ex-
pected weather, and anomalous weather time series are plotted for reference in Figure 2.

3. Preliminary analysis and hypothesis development

This section explores the variation of systemic risk by season in Indian financial markets. For
this, we evaluate the computed systemic risk from January 2005 to November 2022 and extract the
monthly cyclical patterns using the Generalized additive model (GAM)5. Unlike the month-fixed
effect in parametric forms, GAM supports cyclical smoothers known as cyclic cubic splines, which
assume no discontinuity in January or December. This smoother enables us to extract the seasonal
pattern of systemic risk throughout the year. Therefore, we define the GAM specification as fol-
lows:

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ s(month, bs = “cc”, k=12)+η
i
t

(5)

4The residual series, represented by the trend term, may show patterns brought on by climate change or El Nino. In
IPCC reports, global surface temperature rise calculation treats the trend as an anomaly. Given the growing knowledge
of climate change, this study assumes that companies and investors anticipate weather changes. As a result, we
consider trend terms as expected weather variables.

5This data period was chosen based on available economic data for mechanism analysis. Section 4.4 provides a
detailed description of these variables. Section 4.5 details our robustness check utilizing extended data from February
1999 to July 2023.
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Figure 2: Decomposition of temperature and precipitation variables: The expected and
anomaly parts of weather variables are bifurcated using the ensemble empirical mode decom-
position method. The plot uses 1995-year economic activity weighted aggregate temperature and
precipitation for decomposition.
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where ∆CoVaRi
q,t is the systemic risk computed in Section 2.1. We consider three lags of depen-

dent variable to capture short-term memory of systemic risk. We control for the log of the firm’s
size based on market capitalization [log(size)i

t], as per Tzouvanas et al. (2019). To account for the
heterogeneity of systemic risk, our model adds firm- and year-fixed effects. We assume that the
error term (η i

t ) is identically and independently distributed and follows the Scaled-t distribution.
The Scaled-t distribution captures the fat-tail distribution of error terms, which is often the case
with stock returns distribution.

The smooth term—s(month, bs = “cc”, k=12)—captures seasonal patterns across months. The ba-
sis function (bs = “cc”) defines the smoothing estimator as a cyclic cubic spline, and we consider
knots (k) to be 12 defined based on the number of months in a year. We consider the double-penalty
technique to avoid over-fitting while balancing fit and smoothness (Marra and Wood, 2011)6.

The effective degrees of freedom for month cubic spline, estimates for parametric terms, and addi-
tional statistical metrics such as adjusted R2, Akaike information criterion (AIC), and fast residual
maximum likelihood (fREML) score are reported in Appendix A3. We plot the estimated cyclical
systemic risk over months in Figure 3. The dashed blue line depicts the confidence interval derived
from GAM estimates to determine significance. Based on the Indian Meteorological Department’s
(IMD) classification of seasons, we consider four seasons: pre-monsoon (March to May), Monsoon
(June to September), post-monsoon (October to December), and winter (January and February),
which are separated by dotted red vertical lines.

We observe that the expected systemic risk shows variations across different seasons. While the
winter season shows systemic returns (negative risk), the same can not be seen for other seasons.
However, we do find that as we advance into the pre-monsoon season, the systemic risk rises grad-
ually. Furthermore, while systemic risk begins to decline after July and is lowest in August—high
rainfall months in monsoon season—we also observe positive systemic risk during the same sea-
son. However, these observations can be driven by other economic factors, and further analysis is
required to determine the true impact of weather variations on the systemic risk. Accordingly, we
propose the following hypothesis:

Hypothesis 1: Variation in weather impacts the systemic risk in Indian financial markets.

Stock prices, profits, and losses react differently to weather anomalies (unexpected) than to trends

6We have discussed the GAM estimation strategy in Appendix A2.
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Figure 3: Monthly cyclical pattern of the Indian systemic risk: The figure plots the smooth term in Equation
(5) obtained from GAM estimation. The dependent variable is systemic risk, as obtained from Section 2.1. The
specification controls for three lags of systemic risk variable, size of the firm, firm and year fixed effects. The error
term follows the Scaled-t distribution.

or seasonality (expected) if weather information is considered an important pricing determinant
for stocks. Thus, there are several benefits to splitting weather into expected and anomalous com-
ponents. First, considering the decomposed weather in the analysis gives us further data on the
impact on systemic risk that we might otherwise lose via aggregation (Orcutt et al., 1968). Second,
compared to aggregated information, disaggregated information in aggregate models yields supe-
rior forecasting estimates (Hendry and Hubrich, 2011). Finally, segregation aids in determining
the asymmetric effect of changes in expected vis-à-vis anomaly weather on systemic risk. It offers
some evidence of how weather risk is absorbed in systemic risk. As a result, we put forth our
hypotheses that follows:

Hypothesis 2: There is a significant advantage to using decomposed weather variables instead
of aggregate ones in estimating the impact of weather variations on systemic risk

Studies at the global level (Acevedo et al., 2020; Burke et al., 2015; Damania et al., 2020; Kalkuhl
and Wenz, 2020; Kotz et al., 2022) conclude that temperature and precipitation variations have a
non-linear impact on economic growth. In the case of India, studies indicate that temperature and
precipitation variations have a heterogeneous impact on India’s economic outcomes. Weather vari-
ations may benefit in certain seasons but have an adverse effect during some seasons (Auffhammer
et al., 2006; Kumar and Maiti, 2024a). The impact of weather variations on economic output also

12



varies across regions with different climatic zones (Gilmont et al., 2018; Jain et al., 2020; Mitra,
2014; Sandhani et al., 2023). Sector-level analysis have shown differential impact on agriculture
(Birthal et al., 2021; Carleton, 2017; Pattanayak et al., 2021), manufacturing (Colmer, 2021; So-
manathan et al., 2021) and energy sector (Basu and Chakraborty, 2019; Dunning et al., 2015;
Kumar and Maiti, 2024a). Regarding the impact of systemic risk, Tzouvanas et al. (2019) find an
inverted-U-shaped association between temperature shocks and systemic risk in the case of Euro-
pean economies. Given the current literature, we propose the following:

Hypothesis 3: The effect of weather variations on systemic risk varies across seasons and sec-
tors.

4. Hypothesis testing

We continue implementing the Generalized Additive Model (GAM) to test the hypotheses men-
tioned in Section 3. We define two broad classes of GAMs. The first class (or the aggregate class)
of GAMs considers aggregate weather variables (Tt and Pt) for estimation and the second class (or
the decomposed class) uses decomposed weather components, that is, expected weather (Texpected,t

and Pexpected,t) and weather anomaly (Tanomaly,t and Panomaly,t).

We alter Equation (5) by replacing the cyclic smooth term for months with the thin plate spline
smooth terms of economic and weather variables. This change distinguishes the impact of eco-
nomic and weather variables on systemic risk. Both classes of GAM include smooth terms of
seven contemporaneous macroeconomic state variables (used in systemic risk computation). The
aggregate class of GAM accounts for smooth terms of contemporaneous, one-month lagged, and
interaction of aggregate weather variables. On the other hand, the decomposed class of GAM ac-
counts for smooth terms of contemporaneous, one-month lagged, and interaction of decomposed
weather variables. Accordingly, we have 16 monthly time series variables for the aggregate class
and 39 for the decomposed class of GAM (Refer Appendix A4). However, using too many smooth
terms will result in a high pairwise concurvity issue, that is, the possibility of a smooth term being
a non-linear function of another smooth term, making it redundant for the model. The presence
of high concurvity increases the risk of type 1 error (Ramsay et al., 2003) and results in instable
estimates (Buja et al., 1989).

As a result, we must determine the factors that explain most of the systemic risk while ensuring that
the variables considered have minimal concurrency. The minimal redundancy maximum relevance
(mRMR) feature selection technique is especially appealing since its algorithm for identifying rel-
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evant and complementary features is relatively simple to compute (Peng and Ding, 2005). Hence,
we proceed with the following technique to select the best-fit model while maintaining minimal
concurvity, avoiding overfitting, and balancing goodness-of-fit with model complexity.

1. Using the Augmented Dickey fuller (ADF) test, we ensure the stationarity of predictor vari-
ables by considering the first difference of variables in the case of unit roots. The results are
presented in the Appendix A4;

2. Using the mRMR algorithm, we rank the predictor variables (macroeconomic and weather
variables), ensuring maximum correlation with systemic risk variables and minimum corre-
lation with other predictor variables;

3. We then perform step-wise GAM specification selection to the following base model of
Equation (5) without month cyclic smooth term:

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + ζ
i
t

where Dq denotes the quarterly disclosure dummies for the listed firms. We progressively
incorporate the smooth terms of predictor variables derived in Step 2, adding them one at
a time based on their rank. Following each addition, we evaluate pairwise concurvity in
the revised specification. If the pairwise concurvity stays less than 0.50, the base model
preserves the variable and inserts the next ranking variable. However, if introducing a new
variable increases pairwise concurvity above 0.50, it is excluded, and we move on to the next
ranking variable. This progressive selection process continues until all variables have been
addressed. Similar to Equation (5), we use double-penalty estimation to reduce overfitting,
assume knots of smooth terms to be ten, and a scaled-t distribution for error terms;

4. Of the selected specifications in step 3, we select the best-fit model based on the AIC and
fREML scores. In case of discrepancies between AIC and fREML, we use the Analysis of
Variance (ANOVA) test to determine the final model.

The above strategy provides a list of predictor variables that significantly explain the systemic risk
in Indian financial markets. Step 3 indicates that 7 (out of 16) specifications for the aggregate
class of GAMs and 10 (out of 39) specifications for the decomposed class of GAMs contain low
pairwise concurvity between its smooth terms. The list of all the specifications selected based on
concurvity is presented in Appendix A4 for reference.
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4.1. Hypothesis 1: Impact of weather variation on Indian systemic risk

Based on step 4 of the specification-selection strategy in the previous section, we obtain the fol-
lowing optimal specifications for Aggregate class [Equation (6)] and decomposed class [Equation
(7)] of GAMs:

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct

+ s1(Volt) + s2(∆PLRt) + s3(∆Yieldt)

+ w1(∆Tt) + w2(∆Tt−1) + w3(∆Pt) + w4(∆Pt−1)+ζ
i
t

(6)

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + s1(Volt) + s2(∆PLRt)

+ s3(CTB3t) + s4(Mrett) + s5(Creditt)

+ w1(Texpected,t ×Panomaly,t−1) + w2(∆Tanomaly,t−1 ×Panomaly,t−1)

+ w3(∆Pexpected,t−1 ×∆Tanomaly,t) + w4(∆Tanomaly,t−1)

+ w5(Texpected,t)+ζ
i
t

(7)

where, Volt represents market returns volatility; ∆PLRt represents first difference of prime lending
rate; ∆Yieldt represents first difference of yield changes; CTB3t represents change in three-month
treasury bill rate; Mrett represents market returns; and Creditt represents credit spread. These are
selected economic variables influencing the systemic risk. The smooth terms for these economic
variables are presented by s(.) terms.

The smooth terms for these weather variables are presented by w(.) terms. For selected weather
variables, the aggregate class of GAM includes the first difference of contemporaneous (∆Tt and
∆Pt) and lagged (∆Tt−1 and ∆Pt−1) weather variables. In contrast, decomposed class of GAM
includes contemporaneous expected temperature (Texpected,t), first difference of contemporaneous
(∆Tanomaly,t) and lagged (∆Tanomaly,t−1) temperature anomaly, first difference of lagged expected
precipitation (∆Pexpected,t−1), and lagged precipitation anomaly (Panomaly,t−1). The first difference
of selected weather variables represents the presence of long memory property (Takalo, 2022).

To illustrate the complexity of smooth terms [s(.)s and w(.)s] for the aforementioned optimal

GAM specifications, Table 1 displays the Effective Degrees of Freedom (EDF) for GAM estima-
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tion. The EDF greater than one indicates that the smooth term is non-linear. However, EDF merely
shows the complexity of the relationship between these variables and systemic risk but provides no
information regarding the direction or magnitude of the impact. The significance of EDF for each
smooth term indicates the relevance of a given variable while predicting the systemic risk.

The optimal GAM specifications of Equations (6) and (7) highlight the economic and weather
variables that best explain the Indian systemic risk. Furthermore, Table 1 shows that the selected
variables significantly affect systemic risk. Specifically speaking, we notice that the EDF of the
smooth term of all weather variables is greater than 7.00 irrespective of the aggregate class [Col-
umn (1)] or decomposed class [Column (2)] of GAM. These EDF values—considerably greater
than one—indicate that the relationship between weather variables and systemic risk is highly
non-linear and complex. Hence, our findings confirm that weather variables, regardless of GAM
classes, play a significant influence in determining systemic risk, supporting hypothesis 1.

4.2. Hypothesis 2: Aggregate vs decomposed weather variables

The fREML score and AIC in Table 1 are lower for the decomposed class of GAM than the aggre-
gate class, making it a better fit for in-sample performance and complexity. Furthermore, adjusted
R2 is higher for the decomposed class than for the aggregate class. We perform ANOVA test and
confirm that incorporating decomposed components of weather variables significantly improves
model performance.

The superiority of the decomposed class of GAM over the aggregate one highlights the possi-
bility of certain information not being considered in the aggregate class. Aggregate class of GAM
[Equation (6) and Column (1) of Table 1] indicate that market volatility (Volt), prime lending rate
(∆PLRt), and yield changes (∆Yieldt) are important economic variables that explain monthly cy-
cle of systemic risk. On the other hand, for decomposed class [Equation (7) and Column (2) of
Table 1], additional economic variables like changes in treasury bill rate (CTB3t), credit spread
(Creditt), and market returns (Mrett) are more important economic variables than yield changes as
considered in aggregate class.

Notably, we do not observe the interaction between temperature and precipitation variables for
the aggregate class, unlike the decomposed class of GAM. This interaction demonstrates the joint
effect of temperature and precipitation on the systemic risk, which is not considered in the existing
literature (Song and Fang, 2023; Tzouvanas et al., 2019). Furthermore, the aggregate class of GAM
assumes that the impact of weather variation on systemic risk is homogeneous across expected or
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Table 1: Effective degrees of freedom

(1) (2)
Aggregate class Decomposed class

Weather variables:
Equation (6)
w1(∆Tt) 8.925***
w2(∆Tt−1) 8.761***
w3(∆Pt) 8.900***
w4(∆Pt−1) 8.326***

Equation (7)
w1(Texpected,t ×Panomaly,t−1) 14.446***
w2(∆Tanomaly,t−1 ×Panomaly,t−1) 14.288***
w3(∆Pexpected,t−1 ×∆Tanomaly,t) 15.757***
w4(∆Tanomaly,t−1) 7.825***
w5(Texpected,t) 7.848***

Economic variables:
Equation (6)
s1(Volt) 8.916***
s2(∆PLRt) 7.967***
s3(∆Yieldt) 8.938***

Equation (7)
s1(Volt) 8.833***
s2(∆PLRt) 8.922***
s3(CTB3t) 8.943***
s4(Mrett) 8.336***
s5(Creditt) 8.584***
Fixed effects firm, year firm, year
Controls Quarterly dummies, 3 lags of ∆CoVaRi

q,t , firm size
Adj R2 0.744 0.750
AIC 766,591.70 761,593.30
fREML score 340,233.10 339,925.60

This table includes the Effective Degrees of Freedom (EDF) for each smooth term in the
optimal GAMs and post-diagnostic tests. The dependent variable is firm-level systemic
risk in the Indian stock market computed using ∆CoVaRi

q,t framework. The smooth term
of predictor variables is selected based on a 4-step specification selection strategy.
The F-test determines the significance of the EDF values for the smooth terms. EDF
values demonstrate the complex relation between predictor and outcome variables. The
Akaike information criterion (AIC) and fast residual maximum likelihood (fREML)
scores evaluate model fit using in-sample performance and complexity.
Columns (1) and (2) represent the optimal aggregate and decomposed class of GAM
from Equation (6) and (7), respectively. All models have firm-fixed effects and year-
fixed effects. The other control variables include quarterly disclosure dummies, three
lags of dependent variables, and a log of firm size. Standard errors are in the parenthesis.
Error term follows the Scaled-t distribution. Significance levels: * 10%, ** 5%, and ***
1%.
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anomaly rises in weather variables. The decomposed class of GAM relaxes this constraint, al-
lowing us to study the asymmetry behaviour to increases in expected vs anomalous weather. We
utilize a simple epsilon difference approach7 to determine the average derivative of systemic risk
concerning each weather variable. The cumulative average marginal effect of aggregate, expected,
and anomaly weather variation on the systemic risk are presented in Table 2.

Table 2: Cumulative marginal effect of change in weather

(1) (2)
Aggregate class Decomposed class

For 0.1◦C temperature rise
Aggregate (∆T ) -0.0003

(0.0008)
Expected (Texpected) 0.0125***

(0.0009)
Anomaly (∆Tanomaly) 0.1951***

(0.0147)
For 10mm precipitation rise
Aggregate (∆P) 0.0118***

(0.0027)
Expected (∆Pexpected) -0.0139***

(0.0015)
Anomaly (Panomaly) -0.0268***

(0.0040)

This table includes the cumulative average slopes of weather vari-
ations on systemic risk obtained from a simple epsilon difference
approach for the aggregate and decomposed class of GAM. The
dependent variable is firm-level systemic risk in the Indian stock
market computed using ∆CoVaRi

q,t framework.
Column (1) represents the cumulative average marginal effect of
aggregate temperature and precipitation from the aggregate class
of GAM [Equation (6)]. Column (2) presents the cumulative av-
erage marginal effect of expected and anomaly temperature and
precipitation from the decomposed class of GAM [Equation (7)].
All models have firm-fixed effects and year-fixed effects. The
other control variables include quarterly disclosure dummies, three
lags of dependent variables, and a log of firm size. Error term fol-
lows the Scaled-t distribution. Standard errors are in the parenthe-
sis. Significance levels: * 10%, ** 5%, and *** 1%.

The average marginal effect on systemic risk due to a rise of 0.1◦C in temperature and a 10 mm rise
in precipitation are reported in Table 2. Column (1) indicates an insignificant effect of an aggregate
temperature (∆T ) rise but a significant positive effect (0.01 pp per 10 mm) of an aggregate precip-
itation (∆P) rise on the systemic risk. On the other hand, the decomposed class of GAM [Column

7 dy
dx = f (x+ξ/2)− f (x−ξ/2)

ξ
where, here f (.) is the predicted value of smooth term under consideration, and ξ is the

step size to use when calculating numerical derivatives.
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(2)] provides a different picture. It is observed that decomposed temperature variation increases
systemic risk, whereas decomposed precipitation variation decreases systemic risk. Furthermore,
the magnitude of the effect of positive expected weather variation (0.01 pp per 0.1◦C and -0.01
pp per 10 mm) is significantly lower than that due to positive anomaly weather variation (0.20 pp
per 0.1◦C and -0.03 pp per 10 mm). These findings indicate the asymmetric effect of fluctuations
to expected vis-á-vis anomaly on Indian systemic risk, which is ignored when aggregate weather
variables are used.

Accordingly, aggregating the weather variables fails to identify relevant economic variables, accu-
rate estimates of weather variations, and asymmetric effect of expected vis-á-vis anomaly weather
variation, providing evidence for hypothesis 2.

4.3. Hypothesis 3: Heterogeneous effect

To further evaluate the differential impact of weather variation on systemic risk across seasons and
clusters, we augment the GAM model in Equation (7) by interacting the dummy variable of seasons
or clusters with smooth terms related to weather variables and obtain the following specification:

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + s1(Volt) + s2(∆PLRt)

+ s3(CTB3t) + s4(Mrett) + s5(Creditt)

+ ∑
l

wl,1(Texpected,t ×Panomaly,t−1)×Dl

+ ∑
l

wl,2(∆Tanomaly,t−1 ×Panomaly,t−1)×Dl

+ ∑
l

wl,3(∆Pexpected,t−1 ×∆Tanomaly,t)×Dl

+ ∑
l

wl,4(∆Tanomaly,t−1)×Dl + ∑
l

wl,5(Texpected,t)×Dl + ζ
i
t

(8)

where Dl indicates the dummy variable for season or broad clusters. In case of season-wise
analysis, l = {Winter, Pre-monsoon, Monsoon, Post-monsoon} which are seasons of the year
as defined by IMD. Similarly, in case of cluster-wise analysis, l = {Consumer, Manufacturing,
Technology, Energy, Finance, Health Care, Others} as bifurcated in Table. Equation (8) is termed
as Varying Coefficient Generalized Additive Models (VC-GAM), which was introduced by T.
Hastie and Tibshirani (1993). These models estimate w(.)s for each season or cluster separately,
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helping us estimate the differential effect of weather variation on the systemic risk.

4.3.1. Season-wise analysis

We derive the group average marginal effect of 0.1◦C temperature variation and 10 mm precip-
itation variation on systemic risk across seasons from the season-wise VC-GAM estimates and
present it in Table 3. The positive impact of temperature rise in overall systemic risk [Refer to
Column (2) of Table 2] is driven by a temperature rise in monsoon season—Column (3) of Table
3. Interestingly, there is a negative marginal effect of expected temperature rise on systemic risk
during other seasons with no significant effect of anomaly temperature variation [Columns (1),
(2), and (4)]. These findings confirm an inverted U-shaped relation between expected temperature
and systemic risk, corresponding to the relation suggested for aggregate temperature by Tzouvanas
et al. (2019).

Table 3: Cumulative marginal effect across different seasons of a year

(1) (2) (3) (4)
Winter Pre-monsoon Monsoon Post-monsoon

For 0.1◦C temperature rise
Expected (Texpected) -0.0655*** -0.0260*** 0.1275*** -0.0603***

(0.0137) (0.0061) (0.0103) (0.0085)
Anomaly (∆Tanomaly) 0.8970* -0.2430 1.5190*** 0.2710

(0.5253) (0.5121) (0.1286) (0.3384)

For 10 mm precipitation rise
Expected (∆Pexpected) -0.1200* -0.0131 -0.2484*** -0.0436***

(0.0693) (0.0293) (0.0179) (0.0119)
Anomaly (Panomaly) -0.4730*** -0.0814** -0.1082*** -0.3478***

(0.0616) (0.0370) (0.0406) (0.0463)

This table includes the cumulative average slopes of decomposed weather variables on systemic
risk obtained from a simple epsilon difference approach using season-wise varying coefficient
GAM [Equation (8)]. The dependent variable is firm-level systemic risk in the Indian stock
market computed using ∆CoVaRi

q,t framework.
Column (1) represents the cumulative average marginal effect of decomposed weather variables

for the winter season. Column (2) presents results for pre-monsoon season. Column (3) for
monsoon season and Column (4) for post-monsoon season.
Season-wise varying coefficient GAM has firm-fixed effects and year-fixed effects. The other

control variables include quarterly disclosure dummies, three lags of dependent variables, and
a log of firm size. Error term follows the Scaled-t distribution. Standard errors are in the
parenthesis. Significance levels: * 10%, ** 5%, and *** 1%.

In the case of precipitation fluctuations, we observe that the beneficial impact of an expected pre-
cipitation rise on overall systemic risk—as observed in Column (2) of Table 2—is due to an in-
crease in expected precipitation during Monsoon and post-monsoon seasons [Column (3) and (4)
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of Table 3]. On the other hand, the beneficial impact of an anomaly precipitation rise across all sea-
sons with a marginal effect significantly higher for winter (-0.47 pp per 10 mm) and post-monsoon
(-0.35 pp per 10 mm) seasons than pre-monsoon (-0.08 pp per 10 mm) and Monsoon (-0.11 pp per
10 mm) seasons.

4.3.2. Cluster-wise analysis

The group average marginal effect of 0.1◦C temperature and 10 mm precipitation rise on systemic
risk across broad industry clusters are presented in Table 4. We find that the asymmetric marginal
effect of expected vis-á-vis anomaly temperature rise on systemic risk is consistently observed for
all broad industry clusters [Columns (1) to (7)]. However, we observe an insignificant effect of an
expected precipitation rise on systemic risk from the energy cluster [Column (4)]. Furthermore,
we observe that an anomaly precipitation rise has an insignificant effect on systemic risk arising
from broad clusters like technology [Column (3)], finance [Column (5)] and health care [Column
(6)].

Thus, our findings for season-wise do confirm heterogeneous effects across different seasons but
partially confirm heterogeneity in the case of cluster-wise analysis. Accordingly, we partially cor-
roborate hypothesis 3 proposed.

4.4. Mechanism analysis

This section discusses the possible mechanisms that may explain our findings in the previous sub-
sections relating to the decomposed class of GAMs. Investors expect certain payoffs and demand
premiums for risks from firms vulnerable to weather variations (Venturini, 2022). Exposed firms
suffer economic effects of weather variations due to the destruction of assets, adaptive investments,
supply chain disruptions, and rise in input costs (Campiglio et al., 2023). These effects on exposed
firms and subsequent impact on investor’s decision-making are reflected in the systemic risk of the
financial markets.
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Table 4: Cumulative marginal effect across different industry clusters

(1) (2) (3) (4) (5) (6) (7)
Cns Mfg Tech Engy Fin HC Others

For 0.1◦C temperature rise
Expected (Texpected) 0.0093*** 0.0125*** 0.0103*** 0.0274*** 0.0125*** 0.0034** 0.0144***

(0.0011) (0.0011) (0.0017) (0.0033) (0.0016) (0.0014) (0.0011)
Anomaly (∆Tanomaly) 0.1395*** 0.1417*** 0.2250*** 0.2533*** 0.2012*** 0.0676* 0.2077***

(0.0281) (0.0269) (0.0473) (0.0661) (0.0476) (0.0388) (0.0300)

For 10 mm precipitation rise
Expected (∆Pexpected) -0.0107*** -0.0118*** -0.0095** -0.0054 -0.0142*** -0.0094*** -0.0128***

(0.0023) (0.0022) (0.0040) (0.0077) (0.0040) (0.0034) (0.0024)
Anomaly (Panomaly) -0.0171*** -0.0321*** 0.0039 -0.0365** -0.0032 -0.0022 -0.0394***

(0.0055) (0.0057) (0.0092) (0.0183) (0.0085) (0.0069) (0.0064)

This table includes the cumulative average slopes of decomposed weather variables on systemic risk obtained from a simple epsilon difference
approach using cluster-wise varying coefficient GAM [Equation (8)]. The dependent variable is firm-level systemic risk in the Indian stock
market computed using ∆CoVaRi

q,t framework.
Column (1) represents the cumulative average marginal effect of decomposed weather variables for the consumer cluster. Column (2) presents

results for the manufacturing cluster. Column (3) indicates the cumulative average marginal effect for the technology cluster. Column (4) is for
the energy cluster. Column (5) presents results for the finance cluster. Column (6) is for the health care cluster, and Column (7) is for the other
cluster.
Cluster-wise varying coefficient GAM has firm-fixed effects and year-fixed effects. The other control variables include quarterly disclosure

dummies, three lags of dependent variables, and a log of firm size. Error term follows the Scaled-t distribution. Standard errors are in the
parenthesis. Significance levels: * 10%, ** 5%, and *** 1%.
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Weather variations may also influence energy costs for the firm. De Cian et al. (2007), for
hot countries, demonstrate that the rise in summer temperature increases energy demand, whereas
energy demand decreases for the rise in spring and fall temperature. Harish et al. (2020) find
that temperature shocks increase the household energy requirements for India, especially in high-
temperature regions. Baranitharan et al. (2021), using an artificial neural network, find that a model
with weather variables accurately predicts the energy requirements for Indian states like Kerala and
Tamil Nadu. This energy-weather relation indicates that weather variations may increase energy
demand for the firms (increasing their input cost) but, at the same time, may also increase revenue
for the energy firms.

Furthermore, Song and Fang (2023) and X. Wu et al. (2023) find that a positive temperature shock
increases non-performing loans and asset price volatility in Chinese banks, resulting in higher bank
systemic risk. These channels may impact a firm’s operations due to financial constraints and in-
crease the interest costs for the exposed firms.

Acemoglu et al. (2012) find that an economic shock to just one firm may significantly impact
other sectors through inter-firm connectivity. Within India, weather fluctuations have a spillover
effect through labour reallocation (Colmer, 2021) and changes in crop prices (Hossain and Ahsan,
2022). These spillover effects may result in supply chain disruptions for the firms, leading to in-
flationary conditions (Franzoni et al., 2023).

Apart from those mentioned above, there are multiple ways through which weather variations
influence input costs for firms in India. These include the decline in labor supply (Somanathan
et al., 2021), capital productivity (Kumar and Maiti, 2024a), agriculture production (Birthal et al.,
2021), and overall economic growth (Jain et al., 2020; Kumar and Maiti, 2024a; Sandhani et al.,
2023). Thus, numerous avenues exist that indicate the possible impact of weather fluctuations on
firms’ future cash flows, thereby influencing systemic risk in Indian financial markets.

Given the availability of monthly data at the India level, we focus on (1) Wholesale year-on-year
inflation for food (WPIF), manufacturing (WPIM), and total (WPIT); (2) Overall inflation (CPI);
(3) Bank credit supply growth to the food (FCgr) and non-food (NFCgr) sectors; and (4) Energy
demand (PDgr). All data is acquired from the CEIC database from January 2005 to November
2022, except for FCgr and NFCgr, which are obtained from EPWRF for the period starting from
April 2007 and February 2012, respectively.

The weather fluctuations may influence not only the mean economic variables mentioned above
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but also the volatility of these economic variables. If the uncertainty arises, it may further influ-
ence investors’ choices. To capture the mean and volatility effect of weather variations, we use
an Autoregressive model with Generalized Autoregressive Conditional Heteroskedasticity terms
[AR(p)-GARCH(1,1)] to investigate the underlying mechanisms8.

The lag order ‘p’ selection uses the Bayesian Information Criterion (BIC) to ensure model par-
simony. To comprehend the impact of weather variations on mean and uncertainty of economic
variables, we consider expected temperature (Texpected), temperature anomaly (∆Tanomaly), expected
precipitation (∆Pexpected), and precipitation anomaly (Panomaly) as part of the mean and variance
equation. We also use the dummy variable in the mean equation to control for January (the start
of the calendar year), April (the start of the fiscal year), the global financial crisis (July 2008 to
October 2010), and the period after the first lockdown (beginning March 2020).

Table 5 shows the results of weather impact in the mean and variance equations of economic vari-
ables. Variations in temperature and precipitation, as expected, have an impact on both mean and
volatile economic outcomes. Column (1) shows that a temperature anomaly rise raises mean en-
ergy demand, while an expected precipitation rise lowers it. These temperature-related results align
with short-run adaptation behaviours (intensive margin hypothesis) as demonstrated by Auffham-
mer and Mansur (2014). On the other hand, increased expected precipitation may minimize energy
consumption by reducing irrigation needs (Knapp and Huang, 2017).

Columns (2) to (5) of Table 5 show the impact of weather fluctuations on inflation. In the case
of wholesale inflation in manufacturing, Column (2) shows that a positive predicted temperature
shock increases volatility, whereas a positive expected precipitation shock reduces it. However,
Column (3) demonstrates that expected and anomaly temperature variations reduce price volatil-
ity for wholesale food inflation. We suggest that the decrease in volatility may be attributed to
agricultural producers proactively responding to temperature variations or reacting to policies im-
plemented to minimize the adverse effect of temperature rise. These differing effects across various
inflation components have an overall insignificant impact on total wholesale inflation [Column (4)].
However, we find a significant positive marginal effect of a positive expected precipitation shock
on overall inflation volatility [Column (5)] (Hristov & Roth, 2022).

Finally, we examine the impact of weather variations on credit supply. Columns (6) present the

8However, for the model with NFCgr as the dependent variable, convergence concerns need a different specifica-
tion. To obtain reliable estimates, we use an AR(1)-ARCH(1) model, which incorporates conditional heteroskedastic-
ity while maintaining model stability.
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Table 5: Mechanism analysis results

(1) (2) (3) (4) (5) (6) (7)
PDgr WPIM ∆WPIF ∆WPIT ∆CPI NFCgr FCgr

Mean equation
Marginal effect of temperature
Texpected 0.246 -0.006 0.036 0.025 -0.018 -0.172∗∗∗ 0.856∗∗∗

(0.199) (0.015) (0.047) (0.041) (0.027) (0.024) (0.278)
∆Tanomaly 2.639∗∗ 0.976 -1.474 -0.589 0.781 2.852*** -5.794

(1.344) (0.903) (1.754) (1.343) (0.781) (0.663) (5.825)

Marginal effect of precipitation
∆Pexpected -0.067∗∗∗ <-0.001 -0.001 <-0.001 -0.001 -0.004∗∗∗ 0.015

(0.007) (<-0.001) (0.002) (0.001) (0.001) (0.001) (0.024)
Panomaly 0.0048 0.0023 -0.0022 -0.0060 0.0012 -0.0008 -0.0280

(0.0041) (0.0030) (0.0056) (0.0056) (0.0030) (0.0020) (0.0260)
Variance equation
Marginal effect of temperature
Texpected -0.756 0.745∗∗∗ -0.260∗∗ -0.039 -0.053 -0.117 0.407∗

(0.737) (0.288) (0.117) (0.038) (0.040) (0.148) (0.232)
∆Tanomaly 12.037 -5.525 -5.655∗∗ 1.136 0.164 2.998 -4.509

(17.333) (5.868) (2.790) (1.765) (1.369) (3.556) (5.015)

Marginal effect of precipitation
∆Pexpected -0.076 -0.045∗∗∗ 0.0115 0.0048 0.0042∗∗ -0.007∗∗∗ -0.017∗∗

(0.054) (0.017) (0.007) (0.003) (0.002) (0.002) (0.007)
Panomaly -0.004 -0.027 0.008 0.002 -0.002 -0.001 -0.007

(0.058) (0.021) (0.010) (0.006) (0.005) (0.014) (0.042)
Observations 211 212 211 211 211 187 129
BIC -689.67 402.76 1008.31 606.45 586.61 -973.79 -61.39
AR lags 12 14 12 1 0 1 4

This table presents the marginal effect of expected and anomaly temperature from mean and vari-
ance equations of the AR(p)-GARCH(1,1) model except in the case of non-food credit supply growth,
which considers AR(1)-ARCH(1) for convergence. The dependent variables are monthly power de-
mand growth [Column (1)], wholesale year-on-year inflation of manufacturing [Column (2)], first-
difference of wholesale year-on-year inflation of food [Column (3)], first-difference of total wholesale
year-on-year inflation [Column (4)], first-difference of consumer year-on-year inflation [Column (5)],
credit supply growth to non-food sector [Column (6)], and food sector [Column (7)]. The stationarity
is determined using the Augmented Dickey-Fuller test.
The lag term for AR is determined using BIC criteria. All models have dummy variables for January,
April, the global financial crisis, and the lockdown period in the mean equation. Standard errors are
in the parenthesis. Significance levels: * 10%, ** 5%, and *** 1%.
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effects of temperature and precipitation variations on the growth of non-food credit supply. We
suggest that banks likely reduce non-food loan supply in response to a rise in expected temperature
due to concerns over higher default risks in sectors vulnerable to heat stress, such as manufacturing
and construction. However, banks may increase loan supply during anomalous temperature varia-
tions, possibly capitalizing on short-term credit demand spikes from firms adapting to unexpected
climate conditions.

In the case of food credit [Column (7) of Table 5], we observe an increase in loan supply in re-
sponse to expected temperature variations, which likely reflects higher agricultural credit demand
to finance adaptive measures such as irrigation or crop insurance. However, expected precipitation
variations lead to a decline in both the mean and volatility of food and non-food credit growth,
suggesting a combination of reduced borrowing needs (due to improved agricultural output) and
potential declines in nominal interest rates as inflation expectations adjust.

Our findings reveal critical insights into how weather changes affect different economic indica-
tors. These effects influence investor’s risk perception through an effect on exposed firms and
uncertainty in economic conditions. This chain of effects is likely to influence systemic risk in
financial markets ultimately.

4.5. Robustness checks

We perform the robustness tests for the results of the optimal decomposed class of GAM tabulated
in Column (2) of Table 2. Table 6 presents the cumulative average marginal estimates of decom-
posed weather variables for changes in specification, data alteration, and overfitting techniques.
Our results demonstrate that our main results are robust and consistent in spite of these changes.

Column (1) of Table 6 reiterates the main results from Column (2) of Table 2. Columns (2) and
(3) consider the economic activity of the year 2000 and year 2005, respectively, for computing
weighted weather variables instead of the year 1995 as considered as per our main results. Column
(4) includes the extended systemic risk data from February 1999 to July 2023. Columns (5) to (7)
control for feedback effect by considering four-year, five-year, and six-year lags (instead of three)
of the systemic firm-level risk in the optimal decomposed class of GAM.

In GAM, the knots determine the complexity of the basis function used to determine the smooth
term. Notably, the higher the knots, the more flexibility is allowed, which can result in overfitting.
Accordingly, we reduce the number of knots from ten to five as robustness in Column (8) of Table
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6. Alternatively, we consider a thin plate regression spline technique with shrinkage (TPRSS) for
basis function instead of double-penalty optimization [Column (9)].

5. Forecasting of future economic downturns

This section investigates how weather-induced systemic risk might be used to forecast future eco-
nomic activity. We compute the predicted values for weather-related smooth terms for each ob-
servation using Equation (7)—the GAM’s decomposed class. Therefore, we generate a monthly
forecast time series of the weather-induced systemic risk (ŴISRD,t), as follows:

ŴISRD,t = ŵ1(Texpected,t ×Panomaly,t−1) + ŵ2(∆Tanomaly,t−1 ×Panomaly,t−1)

+ ŵ3(∆Pexpected,t−1 ×∆Tanomaly,t) + ŵ4(∆Tanomaly,t−1)

+ ŵ5(Texpected,t)

(9)

To anticipate future economic conditions, we compute the mean of the industrial production index
(MIPIt,n) for ‘n’ months ahead. The industrial production index is derived from the CEIC database.
Finally, as employed by Allen et al. (2012), we propose the following predictive regression:

MIPIt,n = Γ0 +Γ1ŴISRD,t +Γ
′
2Ct +

12

∑
i=1

λiIPIt+i−1 +ξt,n (10)

Ct denotes a vector of control variables for the month ’t’, including the macroeconomic state
variables. In addition to these control variables, we include contemporaneous and 11 lags of the
industrial production index (IPIt). ξt,n represents the error term considered independently and
identically distributed. Finally, the standard errors for slope coefficients are calculated using the
Newey-West standard errors (Newey and West, 1987). The coefficient Γ1 shows the impact of the
rise in weather-induced systemic risk on the mean industrial production during the selected future
‘n’ period.

The findings, which are shown in Table 7, look at how well weather-induced systemic risk may
predict the industrial production index over a range of forecasting periods, from one to twelve
months. Panel (a) of the table depicts the overall impact of weather-induced systemic risk on the
mean of the following ’n’ months. We observe that for briefer monthly horizons (n = 1 to 6),
the systemic risk coefficient remains insignificant at the 5% level, demonstrating weak short-term
forecasting power. However, if the forecasting horizon grows longer than six months, the impact of
systemic risk becomes statistically significant and negative, demonstrating that systemic risk has a
tremendous potential to foresee economic downturns in the medium to long run.
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Table 6: Robustness checks: Cumulative marginal effect

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Main Economic activity wt. Extended Lags of dependent variable Overfitting concerns

Results Yr 2000 Yr 2005 Period Lag 4 Lag 5 Lag 6 Reduced
knots TPRSS

For 0.1◦C temperature rise
Expected 0.0125*** 0.0124*** 0.0156*** 0.0042*** 0.0150*** 0.0119*** 0.0132*** 0.0080*** 0.0147***

(0.0009) (0.0009) (0.0010) (0.0005) (0.0010) (0.0009) (0.0009) (0.0006) (0.0009)
Anomaly 0.1951*** 0.1886*** 0.2443*** 0.1177*** 0.1881*** 0.2338*** 0.2418*** 0.1123*** 0.1612***

(0.0147) (0.0202) (0.0225) (0.0124) (0.0203) (0.0207) (0.0202) (0.0145) (0.0227)

For 10 mm precipitation rise
Expected -0.0139*** -0.0152*** -0.0203*** -0.0158*** -0.0123*** -0.0111*** -0.0132*** -0.0076*** -0.0174***

(0.0015) (0.0016) (0.0016) (0.0013) (0.0015) (0.0016) (0.0016) (0.0013) (0.0015)
Anomaly -0.0268*** -0.0325*** -0.0346*** -0.0414*** -0.0442*** -0.0239*** -0.0310*** -0.0402*** -0.0387***

(0.0040) (0.0051) (0.0044) (0.0031) (0.0050) (0.0049) (0.0049) (0.0039) (0.0052)
Obs. 190,376 190,376 190,376 259,927 189,478 188,580 187,682 190,376 190,376
Adj R2 0.750 0.750 0.751 0.727 0.754 0.755 0.755 0.749 0.751

This table includes the cumulative average slopes of decomposed weather variables on systemic risk obtained from a simple epsilon difference
approach. The dependent variable is firm-level systemic risk in the Indian stock market computed using ∆CoVaRi

q,t framework.
Column (1) represents the main results from Column (2) of Table 2. Columns (2) and (3) consider a decomposed class of GAM for 2000-year

and 2005-year economic activity-weighted weather, respectively. Column (4) considers systemic risk data from February 1999 to July 2023.
Columns (5) to (7) extend the lags of dependent variables from three to four, five and six, respectively. To avoid overfitting concerns, we consider
an alternative estimation strategy of reducing knots to 5 instead of 10 in Column (8) and using thin-plate regression spline with shrinkage instead
of the double-penalty technique in Column (9).
All models have firm-fixed effects and year-fixed effects. The other control variables include quarterly disclosure dummies, three lags of

dependent variables, and a log of firm size. Error term follows the Scaled-t distribution. Standard errors are in the parenthesis. Significance
levels: * 10%, ** 5%, and *** 1%.
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We explore the impact of rising weather-induced systemic risk in various seasons on future eco-
nomic downturns. For this, we compute anticipated values of weather-induced smooth terms ob-
tained from season-wise VC-GAM model [Equation (8)] for different seasons using Equation (9).
We employ season-specific weather-induced systemic risk in Equation (10) instead of ŴISRD,t .
Panel (b) of Table 7 shows that systemic risk in pre-monsoon and winter seasons predicts short to
medium-run future economic downturns. Specifically, the pre-monsoon systemic risk coefficient
becomes significant as early as n = 3 months, implying that negative economic consequences from
this season are forecast significantly earlier than other seasons. In contrast, the monsoon and post-
monsoon seasons have generally weak to no predicting capacity, as indicated by the absence of
significance over most forecasting horizons.

Finally, we investigate the ability to foresee weather-induced systemic risk across each broad clus-
ter. Using a technique akin to season-wise analysis, we determine the cluster-wise systemic risk.
We alternately use Equation (8) for every broad cluster. Panel (c) of Table 7 displays these find-
ings. All clusters have consistently significant negative coefficients at medium to long horizons,
similar to overall systemic risk results. However, broad clusters like healthcare and energy show
predictive linkages with different degrees and timing of effects. In particular, weather-induced
systemic risk from the healthcare cluster can be forecasted from shorter to longer horizons. In
contrast, weather-induced systemic risk from the energy cluster can only be forecasted for longer
periods. These findings reveal sectoral variability in systemic risk forecasting.

Overall, the findings highlight the importance of horizons for analyzing the forecasting ability of
systemic risk on economic activity. While the short-term consequences appear limited, systemic
risk has a rising potential to predict economic downturns over long periods.

6. Conclusion

This study offers insight into the impact of variations in the weather on systemic risk in Indian
financial markets, highlighting the unique effects of temperature and precipitation on both systemic
risk and economic forecasts. Overcoming the limits of aggregate data, we offer a more thorough
understanding of how weather variations spread through Indian financial markets by utilizing a
semi-parametric GAM model and decomposed weather variables.
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Table 7: Predictive ability of weather-induced systemic risk

Dependendent variable: Mean industrial production index (MIPIt,n) for future ‘n’ months
Cluster n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
(a) Weather-induced systemic risk as per decomposed class of GAM
Marginal effect 0.41 -0.35 -1.32 -1.28 -1.60* -1.56* -1.95** -2.18*** -2.17*** -1.92*** -1.79*** -1.88***

(1.79) (1.36) (1.11) (0.99) (0.82) (0.84) (0.78) (0.68) (0.63) (0.61) (0.62) (0.60)

(b) Weather-induced systemic risk across seasons
Winter 0.00 -0.10 -0.64 -0.61 -0.60 -0.70* -0.65** -0.42 -0.23 -0.20 -0.21 -0.20

(0.35) (0.60) (0.76) (0.67) (0.53) (0.38) (0.30) (0.27) (0.22) (0.19) (0.18) (0.18)
Pre-monsoon -0.30 -0.48 -0.95** -0.99*** -0.83*** -0.58*** -0.50** -0.47** -0.39* -0.32 -0.32 -0.39**

(0.25) (0.33) (0.38) (0.32) (0.24) (0.21) (0.21) (0.20) (0.21) (0.22) (0.20) (0.19)
Monsoon -0.16 -0.07 -0.16 -0.07 -0.11 0.02 0.05 0.03 0.07 0.01 -0.09 -0.16

(0.32) (0.33) (0.35) (0.27) (0.24) (0.26) (0.28) (0.24) (0.21) (0.20) (0.19) (0.18)
Post-monsoon 0.05 0.07 -0.06 -0.05 -0.26 -0.11 -0.18 -0.35** -0.30* -0.16 -0.15 -0.21

(0.45) (0.40) (0.29) (0.24) (0.23) (0.20) (0.20) (0.17) (0.16) (0.17) (0.16) (0.14)

(c) Weather-induced systemic risk across broad clusters
Consumer 0.83 -0.24 -1.59 -1.75 -2.05** -2.00** -2.40*** -2.69*** -2.56*** -2.25*** -2.01*** -2.16***

(2.17) (1.61) (1.28) (1.08) (0.91) (0.93) (0.89) (0.79) (0.75) (0.73) (0.73) (0.67)
Manufacturing 0.89 -0.22 -1.32 -1.34 -1.61* -1.53* -2.01** -2.27*** -2.23*** -1.97*** -1.78*** -1.94***

(2.05) (1.52) (1.27) (1.12) (0.90) (0.91) (0.84) (0.73) (0.68) (0.65) (0.64) (0.59)
Technology 0.15 -0.34 -1.23 -1.37 -1.75** -1.78** -2.11*** -2.30*** -2.17*** -1.91*** -1.76*** -1.81***

(1.61) (1.25) (1.05) (0.89) (0.70) (0.69) (0.65) (0.60) (0.58) (0.57) (0.58) (0.56)
Energy -0.11 -0.11 -0.30 -0.10 -0.42 -0.40 -0.77 -0.93* -1.01** -0.95** -0.97** -1.02**

(1.05) (0.88) (0.92) (0.91) (0.71) (0.72) (0.62) (0.54) (0.48) (0.42) (0.42) (0.42)
Finance 0.42 -0.11 -1.11 -1.24 -1.51* -1.54* -1.92** -2.07*** -1.95*** -1.75*** -1.70*** -1.84***

(1.84) (1.39) (1.15) (1.00) (0.88) (0.86) (0.79) (0.71) (0.67) (0.62) (0.61) (0.59)
Health care 0.58 -0.55 -2.24** -2.46** -2.44*** -2.31** -2.72*** -3.02*** -2.80*** -2.39*** -2.10*** -2.23***

(2.06) (1.49) (1.08) (0.95) (0.89) (0.95) (0.87) (0.74) (0.73) (0.72) (0.70) (0.63)
Others 0.14 -0.41 -1.13 -1.09 -1.42* -1.39* -1.79** -1.95*** -1.94*** -1.71*** -1.56*** -1.64***

(1.64) (1.32) (1.12) (0.98) (0.76) (0.76) (0.70) (0.63) (0.59) (0.56) (0.56) (0.54)

The table reports the coefficient estimates of weather-induced systemic risk from the predictive regressions from Equation (10). The dependent variable is
the mean of the industrial production index over the following ‘n’ months. Control variables include contemporaneous and 11-lags of industrial production
index and macroeconomic state variables. Panel (a) considers overall weather-induced systemic risk obtained from Equation (7). Panel (b) has season-wise
systemic risk from weather variations, whereas Panel (c) considers cluster-wise systemic risk from weather variations. Standard errors are Newey-west.
Significance levels: * 10%, ** 5%, and *** 1%.
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Several significant findings emerge from our analysis. First, aggregating weather variables
leads to inaccurate estimates because it obscures the unique effects of expected and anomalous
weather variations. The decomposed weather model demonstrates that, while temperature varia-
tions increase systemic risk, precipitation variations reduce it—a relation that the aggregate model
does not capture. In addition, we identify asymmetric impacts, in which anomaly weather vari-
ations affect systemic risk more than expected changes. We ascribe these patterns to potential
mechanisms, such as how the mean and volatility of economic outcomes of power consumption,
supply chain disruptions, and loan supply are affected by expected and anomalous weather varia-
tions.

Additionally, our heterogeneity analysis highlights the complexity of weather-induced systemic
risk by showing that the effects of weather variations differ depending on the season and industry
cluster. Finally, we also show that, while weather-induced systemic risk has low short-term pre-
dictive capacity, it plays an important role in forecasting medium- and long-term economic activity.

These findings have significant consequences for policymakers and investors. Policymakers should
integrate decomposed weather data into stress-testing frameworks to increase the precision of fi-
nancial stability assessments and economic forecasts. This can improve stress-testing measures and
establish a stronger platform for addressing climate-related financial risks. Investors, in turn, can
benefit from the predictive power of weather-induced systemic risk by incorporating decomposed
weather data into their portfolio management strategies. Strengthening portfolios can improve
risk-adjusted returns and support market stability in general.

These results further emphasize the significance of a put-forward financial stability mechanism
through which weather variations influence economic growth. Future studies should look into how
different financial instruments react to weather variations to understand potential risk-hedging be-
haviour among investors better. Furthermore, while prior studies have looked at the importance
of labour, capital, health, and trade as channels for the economic effects of weather variations,
future studies should include financial stability as a vital channel for improving the reliability of
damage function estimations. Finally, more research is needed to investigate the impact of weather
variations on investor’s psychological state while accounting for financial instability caused by bad
economic situations due to weather variations.
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Appendix

A1. Summary statistics

Table A1 provides mean and standard deviation values of stock return, market capitalization, num-
ber of firms and observations in each industry. These industries are classified into seven broad
clusters based on Industrial Benchmark Code. In total, we have 898 listed firms from period
February 1999 to July 2023.
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Table A1: Sector-wise summary statistics

Broad Returns No. of Market
Sector Cluster Mean Std. Dev. Obs. firms capitalisation
Aerospace and Defense Manufacturing 1.11 15.52 430 2 0.36%
Chemicals Manufacturing 1.28 17.58 15,480 72 2.03%
Construction and Materials Manufacturing 0.67 18.35 6,020 28 0.40%
Electronic and Electrical Equipment Manufacturing 1.22 17.80 430 2 0.01%
Forestry and Paper Manufacturing 0.58 17.44 3,225 15 0.21%
General Industrials Manufacturing 1.09 19.26 6,020 28 2.02%
Industrial Engineering Manufacturing 1.01 16.68 11,180 52 0.70%
Industrial Metals and Mining Manufacturing 0.97 17.36 7,740 36 4.78%
Industrial Transportation Manufacturing 0.45 15.99 2,795 13 0.74%
Mining Manufacturing 0.99 17.07 1,075 5 0.86%
Alternative Energy Energy 2.16 23.33 430 2 0.02%
Electricity Energy 0.46 13.65 860 4 0.77%
Oil and Gas Producers Energy 0.39 17.88 1,290 6 3.67%
Oil Equipment and Services Energy 1.37 17.21 645 3 0.07%
Banks Finance 1.30 12.79 3,655 17 17.28%
Financial Services (Sector) Finance 0.87 18.64 10,535 49 3.32%
Health Care Equipment and Services Health care 0.94 15.47 1,290 6 0.30%
Pharmaceuticals and Biotechnology Health care 0.96 16.22 12,900 60 6.30%
Software and Computer Services Technology 1.02 20.02 8,600 40 8.41%
Support Services Technology 1.06 15.47 1,505 7 0.39%
Technology Hardware and Equipment Technology 0.54 19.40 3,225 15 0.21%
Automobiles and Parts Consumer 0.92 14.75 9,890 46 4.12%
Beverages Consumer 1.34 16.32 2,365 11 0.80%
Food Producers Consumer 1.11 16.52 9,890 46 2.10%
Food and Drug Retailers Consumer 1.85 14.97 215 1 0.01%
General Retailers Consumer -0.01 21.15 1,505 7 0.21%
Household Goods and Home Construction Consumer 1.70 14.76 3,010 14 0.45%
Leisure Goods Consumer 0.27 18.98 1,075 5 0.01%
Media Consumer 0.33 16.95 1,505 7 0.05%
Personal Goods Consumer 0.66 18.50 14,620 68 5.59%
Tobacco Consumer 0.90 13.58 1,075 5 3.65%
Travel and Leisure Consumer 0.95 15.15 3,870 18 0.49%

Gas, Water and Multiutilities Others 1.81 12.02 430 2 0.18%
Fixed Line Telecommunications Others 0.18 17.21 1,075 5 0.38%
Real Estate Investment and Services Others 0.89 20.25 2,365 11 0.28%
Others Others 1.08 16.41 40,850 190 28.87%

The clusters are defined based Industrial Benchmark Code.
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A2. GAM estimation strategy

According to T. J. Hastie (2017), the Generalized Additive Model (GAM) is an extension of Gen-
eralized Linear Models that permits flexible, non-linear connections between predictors and the
response variable. The model assumes the following structure.

g(E[Y ]) = α +
p

∑
j=1

f j(X j)+ ε, (A1)

where α is the intercept, X j represents the predictor variables, f j(.) is the smooth function of pre-
dictors, Y is the response variable, and g(.) is the link function (which in our instance is considered
to be linear). This model allows for a non-normal error distribution for error term ‘ε’, which is the
Scaled-t distribution in our case.

A2.1. Basis function

Basis functions are used to estimate the smooth functions f j(.). A basis function serves as a
fundamental building component for the model, allowing it to approximate nonlinear interactions.
f j(.) is expressed as a weighted sum of simpler functions rather than being estimated directly:

f j(x) =
K

∑
k=1

βkφk(x) (A2)

where φk(x) represents the basis functions, βk represents the associated coefficients, and K repre-
sents the number of basis functions employed.

A2.2. Preliminary analysis: Cyclical cubic splines

The preliminary analysis in Section 3 uses a cyclical cubic spline with 12 knots (K) to extract
cyclical systemic risk throughout the year. Cyclical cubic splines are a type of cubic spline intended
to provide smoothness and continuity at a periodic function’s borders. As defined in Equation
(A2), K = 12 knots in the basis functions indicate the number of months in a year, βk are spline
coefficient and φk(x) are cubic basis function. We also assume additional constraint of functional
continuity [ f j(x1) = f j(xK)], first derivative continuity [ f ′j(x1) = f ′j(xK)], and second derivative
continuity [ f ′′j (x1) = f ′′j (xK)] to avoid artificial discontinuities in cyclical data.
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A2.3. Hypothesis testing: Thin plate splines

In Sections 4.1 and 4.2, we use thin-plate splines (Duchon, 1977) to estimate f j(x)s, enabling the
inclusion of several variables in a smooth function. The selection of thin-plate splines over other
splines is multivariate smooth function which is a limitation for other splines. As per Equation
(A2), φk(x) are the thin plate spline basis functions evaluated at the covariates in x.

A2.4. Double-penalty technique

To estimate α and θk [Equation (A1) or (A2)], a double penalized regression technique is implied
as follows:

min

 n

∑
i=1

[
Yi −α −

p

∑
j=1

f j(xi)

]2

+λ1

K

∑
k=1

∫ (
∂ 2 f j(x)

∂x2

)2

dx+λ2

K

∑
k=1

∫
f 2(x)dx


where Yi is the i-th response variable, and Xi is the i-th row of matrix X. The range space, which
is the more complicated or "wiggly" portion of the smoother, is penalized by the parameter λ1.
λ2 applies an extra penalty to the smoother’s simpler half, or null space, in the double-penalty
approach (see Marra and Wood, 2011). The smoothing parameters (λ1 and λ2) are obtained by
minimizing the AIC9 or fREML score. Using F-test statistics, we assess the significance of smooth
terms with the null hypothesis that f j(x) = 0 for all values of x.

A2.5. Varying Coefficient GAM

For heterogeneity analysis (Section 4.3), we consider varying coefficient GAM structured as fol-
lows, a modification to Equation (A1):

g(E[Y ]) = α +
p

∑
j=1

f j(X j)Dl + ε, (A3)

where β T (X) is a vector of unknown function coefficient of dummy variable Dl allowed to vary
smoothly over the effect modifiers X . The double penalty technique is augmented to suit the
varying coefficient GAM as follows:

min

 n

∑
i=1

[
Yi −α −

p

∑
j=1

f j(xi)

]2

+λ1

K

∑
k=1

∫ (
∂ 2βk

∂x2

)2

dx+λ2

K

∑
k=1

∫
β

2
k dx


9AIC is preferred above BIC for model selection (Shao, 1997).
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The rest of the estimation described in previous sections applies to varying coefficient GAM.
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A3. Preliminary analysis

Table A2: Results for preliminary analysis

(1)
Smooth term: Effective degree of freedom

Months - Effective degrees of freedom 9.9440***

Parametric terms: Marginal effects

∆CoVaRi
q,t−1 0.4732***

(0.0022)
∆CoVaRi

q,t−2 0.1661***
(0.0023)

∆CoVaRi
q,t−3 0.1467***

(0.0020)
log(size)i

t -0.0148***
(0.0041)

Fixed effects Firm, year
Adj R2 0.738
AIC 771,494.50
fREML score 340,770.60

This table includes the Effective Degrees of Freedom for the cycli-
cal smooth term and coefficient estimates for the parametric terms
in Equation (5) in the main paper. The dependent variable is
firm-level systemic risk in the Indian stock market computed us-
ing ∆CoVaRi

q,t framework.
The F-test determines the significance of the EDF values for the
smooth terms. The Akaike information criterion (AIC) and fast
residual maximum likelihood (fREML) scores evaluate model fit
using in-sample performance and complexity.
The model has firm-fixed effects and year-fixed effects. The other
control variables include three lags of dependent variables, and a
log of firm size. Standard errors are in the parenthesis. Error term
follows the Scaled-t distribution. Significance levels: * 10%, **
5%, and *** 1%.
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A4. Hypothesis testing method

A4.1. Augmented Dickey-fuller unit-root test:

We present the unit root results of economic variables considered for GAM models in Table A3.
The lags are considered based in BIC. In case of non-stationary series, we consider first difference
to remove the unit-root.

Table A3: Augmented Dickey-fuller unit root results

Variables Lag Selection (BIC) test-statistics Critical values (5%)
Aggregate temperature 11 -2.495 -3.43
Expected temperature 10 -6.168 -3.43
Anomaly temperature 12 -2.465 -3.43
Aggregate precipitation 11 -2.912 -3.43
Expected precipitation 11 -3.399 -3.43
Anomaly precipitation 9 -4.225 -3.43
Short-term liquidity 1 -5.278 -3.43
Change in 3-month treasury bill rate 1 -11.026 -3.43
Yield 1 -2.633 -3.43
Credit spread 1 -5.434 -3.43
Prime lending rate 1 -3.146 -3.43
Market returns 1 -10.312 -3.43
Market volatility 11 -6.789 -3.43

A4.2. Variables for mRMR algorithm

We consider 7 macroeconomic state variables for each class of GAM. This includes short-term liq-
uidity (STLSt), changes in the 3-month treasury bill rate (CTB3t), yield changes (∆Yieldt), credit
spread (Creditt), prime lending rate changes (∆PLRt), monthly market returns (Mrett), and volatil-
ity (Volt).

In case of aggregate class of GAM, we use first difference of aggregate temperature and precipita-
tion variable (∆Tt , ∆Pt , ∆Tt−1, and ∆Pt−1). Along with these aggregate variables, we also include
interactions of these variables as follows: ∆Tt ×∆Tt−1, ∆Tt ×∆Pt , ∆Tt ×∆Pt−1, ∆Pt ×∆Tt−1, and
∆Pt ×∆Pt−1. Together, we have 16 variables for the aggregate class of GAM.

In case of decomposed class of GAM, we use expected temperature, precipitation anomaly, and
first difference of temperature anomaly and expected precipitation variable (Texpected,t , Texpected,t−1,
∆Tanomaly,t , ∆Tanomaly,t−1, ∆Pexpected,t , ∆Pexpected,t−1, Panomaly,t , and Panomaly,t−1). Along with these
decomposed variables, we also include interactions of these variables resulting to 24 interaction
variables. Together, we have 39 variables for the decomposed class of GAM.
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A4.3. Selected GAM specification after mRMR algorithm

A4.3.1. Aggregate class:

1.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+ζ
i
t

2.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + ζ
i
t

3.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + s2(∆Yieldt) + ζ
i
t

4.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + s2(∆Yieldt) +w1(∆Pt) + ζ
i
t

5.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + s2(∆Yieldt) +w1(∆Pt) +w2(∆Tt) + ζ
i
t

6.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + s2(∆Yieldt) +w1(∆Pt) +w2(∆Tt)

+ w3(∆Tt−1) + ζ
i
t
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7.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + s2(∆Yieldt) +w1(∆Pt) +w2(∆Tt)

+ w3(∆Tt−1) + w4(∆Pt−1) + ζ
i
t

A4.3.2. Decomposed class:

1.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+ζ
i
t

2.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + ζ
i
t

3.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t×Panomaly,t-1) + ζ
i
t

4.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + ζ
i
t
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5.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + s3(CTB3t) + ζ
i
t

6.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + s3(CTB3t)

+ w3(∆Pexpected,t-1 ×∆Tanomaly,t) + ζ
i
t

7.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + s3(CTB3t)

+ w3(∆Pexpected,t-1 ×∆Tanomaly,t) + s4(Mrett) + ζ
i
t

8.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + s3(CTB3t)

+ w3(∆Pexpected,t-1 ×∆Tanomaly,t) + s4(Mrett)

+ w4(Texpected,t) + ζ
i
t
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9.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + s3(CTB3t)

+ w3(∆Pexpected,t-1 ×∆Tanomaly,t) + s4(Mrett)

+ w4(Texpected,t) + s4(Creditt) + ζ
i
t

10.

∆CoVaRi
q,t = β0 +

3

∑
j=1

β j∆CoVaRi
q,t− j +β4log(size)i

t + γi +δy

+ DJan + DApril + DJuly + DOct + +s1(Volt)+

+ s2(∆PLRt) + w1(Texpected,t ×Panomaly,t-1)

+ w2(∆Tanomaly,t-1 ×Panomaly,t-1) + s3(CTB3t)

+ w3(∆Pexpected,t-1 ×∆Tanomaly,t) + s4(Mrett)

+ w4(Texpected,t) + s4(Creditt) + w5(∆Tanomaly,t−1) + ζ
i
t

47


	WP_manuscript.pdf
	Introduction
	Contribution to existing literature

	Data and variable construction
	Computation of Systemic risk (CoVaR)
	Weather variables
	Preliminary analysis and hypothesis development
	Hypothesis testing
	Hypothesis 1: Impact of weather variation on Indian systemic risk
	Hypothesis 2: Aggregate vs decomposed weather variables
	Hypothesis 3: Heterogeneous effect
	Season-wise analysis
	Cluster-wise analysis
	Mechanism analysis
	Robustness checks

	Forecasting of future economic downturns
	Conclusion
	Appendix
	Summary statistics
	GAM estimation strategy
	Basis function
	Preliminary analysis: Cyclical cubic splines
	Hypothesis testing: Thin plate splines
	Double-penalty technique
	Varying Coefficient GAM
	Preliminary analysis
	Hypothesis testing method
	Augmented Dickey-fuller unit-root test:
	Variables for mRMR algorithm
	Selected GAM specification after mRMR algorithm
	Aggregate class:
	Decomposed class:







	WP_manuscript.pdf
	Introduction
	Contribution to existing literature

	Data and variable construction
	Computation of Systemic risk (CoVaR)
	Weather variables
	Preliminary analysis and hypothesis development
	Hypothesis testing
	Hypothesis 1: Impact of weather variation on Indian systemic risk
	Hypothesis 2: Aggregate vs decomposed weather variables
	Hypothesis 3: Heterogeneous effect
	Season-wise analysis
	Cluster-wise analysis
	Mechanism analysis
	Robustness checks

	Forecasting of future economic downturns
	Conclusion
	Appendix
	Summary statistics
	GAM estimation strategy
	Basis function
	Preliminary analysis: Cyclical cubic splines
	Hypothesis testing: Thin plate splines
	Double-penalty technique
	Varying Coefficient GAM
	Preliminary analysis
	Hypothesis testing method
	Augmented Dickey-fuller unit-root test:
	Variables for mRMR algorithm
	Selected GAM specification after mRMR algorithm
	Aggregate class:
	Decomposed class:










