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Introduction I

In Lectures 1 and 2 we discussed social choice functions and social welfare
functions for social choice situations.

In Lecture 2 we also discussed voting power indices

In Lecture 3 we discussed ranking methods for digraphs and applied them
to define social choice and social welfare functions.

In this last lecture we discuss cooperative games. This generalizes the
simple games discussed in Lecture 2 (to define voting power indices) as
well as power measures of Lecture 3 (to define ranking methods).
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Cooperative games I

1. Cooperative games
A cooperative game with transferable utility (shortly TU-game) is a
pair (A, v), with:

A ⊂ IN a finite set of m players (indexed by a = 1, . . . ,m), and

v : 2A → IR a characteristic function, assigning worth v(S) ∈ IR to any
coalition S ⊆ A, such that v(∅) = 0.
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Cooperative games II
We distinguish between profit and cost games.

Profit (surplus) games: v(S) is the maximum surplus the coalition S of
players can obtain by cooperating.

Cost games: v(S) is the minimum costs (to obtain something or to
perform a task) of coalition S when the players in S cooperate.

In this lecture we only consider profit games. (Similar results hold for cost
games.)

Let GA be the collection of all games on player set A.
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Cooperative games III
Game properties
A game (A, v) is monotone if for all S ⊆ T ⊆ A it holds that

v(S) ≤ v(T ).
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Cooperative games IV
A game (A, v) is superadditive if for all S , T ⊆ A with S ∩ T = ∅ it
holds that

v(S ∪ T ) ≥ v(S) + v(T ).

A game (A, v) is convex if for all S , T ⊆ A it holds that

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ).

Note that every convex game is superadditive.
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Cooperative games V
Two main questions cooperative game theory tries to answer:

1. What coalitions will form?

2. How to allocate the worth that coalitions can earn over the individual
players?

Here we only consider the second question.
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Cooperative games VI

Value allocation

Problem: How to divide the total worth v(A) over the individual players?

A payoff vector x ∈ IRn is effi cient for game (A, v) if ∑a∈A xa = v(A).
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The Core I

2. Set-valued solutions: the Core
A set-valued solution for TU-games is a mapping F assigning a set of
payoff vectors F (A, v) ⊂ IRn to every game (A, v).
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The Core II
Most well-known set-valued solution concept: Core (Gillies (1953))

Definition A payoff vector x ∈ IRn giving payoff xa to player a is in the
Core, denoted by Core(A, v), of the game (A, v) if and only if

(i) ∑a∈A xa = v(A)

(ii) ∑a∈S xa ≥ v(S) for all S ⊂ A.
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The Core III
Observe: the Core is determined by the system of linear (in)-equalities:

Core(A, v) = {x ∈ IRn | ∑
a∈A

xa = v(A), ∑
a∈S

xa ≥ v(S), S ⊂ A}.

Alternative definition:
A payoff vector x ∈ IRn is dominated (or blocked) by coalition S if
v(S) > ∑a∈S xa.
Then Core(A, v) is the set of undominated effi cient payoff vectors.
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The Core IV
Let

Eff (A, v) = {x ∈ IRn | ∑
a∈A

xa = v(A)},

be the set of effi cient payoff vectors.

The Imputation Set of game (A, v) is the set of effi cient and individually
rational payoff vectors,

I (A, v) = {x ∈ Eff (A, v) | xa ≥ v({a}) for all a ∈ A}

Observe: Core(A, v) ⊆ I (A, v).
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The Core V
Theorem
Every convex game (A, v) has a nonempty core.

In particular,

Theorem
The Core of a convex game (A, v) is the convex hull of the marginal
vectors of the game.
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The Core VI
Marginal vectors
Let π : A→ A be a permutation of A, i.e. for any number k = 1, . . . , n
there is precisely one player a ∈ A such that π(a) = k . For instance, when
players enter a room, a enters the room as number π(a). For given
permutation π and player a ∈ A, define

Sπ
a = {b ∈ A | π(b) ≤ π(a)},

i.e. Sπ
a is the set of players containing a and all players ‘entering the room’

before a.
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The Core VII
For permutation π, the marginal vector mπ(v) ∈ IRn of a game (A, v) is
given by

mπ
a (v) = v(S

π
a )− v(Sπ

a \ {a}), a = 1, . . . , n. (1)

So, player a gets the payoff it adds to the worth of the coalition of players
that entered the room before him/her.

The value mπ
a (v) is called the marginal contribution of player a to

coalition Sπ
a \ {a}.
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The Core VIII

The convex hull of all marginal vectors of (A, v) is called Weber Set, and
denoted by W (A, v).

Theorem
For every game (A, v) it holds that Core(A, v) ⊆ W (A, v).
Moreover, Core(A, v) = W (A, v) if and only if (A, v) is convex.

Remark: Other set-valued solutions are, e.g. the Bargaining set, Kernel,
vNM Stable set, Harsanyi set (or Selectope).
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The Shapley value I

3. Value functions: the Shapley value

A single-valued solution or value function for TU-games is a function f
assigning payoff vector f (A, v) ∈ IRn to every (A, v) ∈ GA.

René van den Brink VU Amsterdam and Tinbergen InstitutePPE International Summerschool Mumbai May 2016 18 / 52



The Shapley value II
The Shapley value

The Shapley value (Shapley value (1953)) is the value function f Sh

defined as:

f Sha (A, v) =
1

(#A)! ∑
π∈Π(A)

mπ
a (v),

where Π(A) is the collection of all permutations on A, and mπ(v) is given
by (1).

So, the Shapley value assigns to every player its expected marginal
contribution assuming that all permutations (orders of entrance) have
equal probability to occur.
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The Shapley value III
Equivalently, the Shapley value can be defined as

f Sha (A, v) = ∑
S⊆A
a∈S

(#A−#S)!(#S − 1)!
(#A)!

mSa (v), a ∈ A,

where

mSa (v) = v(S)− v(S \ {a}),

is the marginal contribution of player a to coalition S \ {a}.
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The Shapley value IV

Theorem
If (A, v) is a convex game then mπ(v) ∈ Core(A, v) for all π ∈ Π(A).

Corollary
If (A, v) is a convex game then f Sh(A, v) ∈ Core(A, v).
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Application to ranking methods I

4. Application to ranking methods, social choice and voting

Consider a digraph D.

Recall that for digraph D on set of alternatives A and alternative a ∈ A,
the alternatives in the set

Succa(D) = {b ∈ A \ {a} | (a, b) ∈ D}

are called the successors of a in D, and

the alternatives in the set

Preda(D) = {b ∈ A \ {a} | (b, a) ∈ D}

are called the predecessors of a in D.
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Application to ranking methods II

Definition
The optimistic score game corresponding to digraph D on A is the game
(A, vD ) given by

vD (T ) = #SuccT (D) for all T ⊆ A,

where SuccT (D) =
⋃
a∈T Succa(D) is the set of successors of at least one

alternative in T .

Interpretation: The worth of coalition of alternatives T in digraph D is the
number of alternatives that are dominated by at least one alternative in T .

Note that vD ({a}) = outa(D) for all a ∈ A, and thus this game is an
extension of the outdegree.
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Application to ranking methods III
Theorem
For every digraph D we have f Sh(A, vD ) = β(D).

Recall that the β-score of alternative a ∈ A in digraph D is given by

βa(D) = ∑
b∈Succa(D )

1
#Predb(D)
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Application to ranking methods IV

Definition
The pessimistic score game corresponding to digraph D on A is the
game (A, v ∗D ) given by

v ∗D (T ) = #{a ∈ SuccT (D) | Preda(D) ⊆ T} for all T ⊆ A.

Interpretation: In the pessimistic game, the worth of coalition of
alternatives T in digraph D is the number of alternatives that are
dominated by at least one alternative in T and by no alternatives outside
T .

Theorem
For every digraph D, we have v ∗D (T ) = vD (A)− vD (A \ T ), i.e. vD and
v ∗D are each others dual game.
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Application to ranking methods V

Corollary
For every digraph D we have f Sh(A, v ∗D ) = β(D).

Theorem
For every digraph D we have f Sh(A, v ∗D ) ∈ Core(A, v ∗D ).
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Axiomatization of the Shapley value I

5. Axiomatization of the Shapley value

A player a ∈ A is a null player in (A, v) if v(S ∪ {a}) = v(S) for every
S ⊆ A \ {a}.

Two players a and b are symmetric in (A, v) if for every S ⊆ A \ {a, b} it
holds that

v(S ∪ {a}) = v(S ∪ {b}).
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Axiomatization of the Shapley value II
Axioms
A value function f satisfies effi ciency if
∑a∈A fa(A, v) = v(A) for every game (A, v).

A value function f satisfies the null player property if for every game
(A, v) it holds that fa(A, v) = 0 when i is a null player in (A, v).

A value function f satisfies symmetry (or equal treatment of equals) if
for every game (A, v) it holds that fa(A, v) = fb(A, v) when a and b are
symmetric in (A, v).
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Axiomatization of the Shapley value III
A value function f on G satisfies linearity if for every two games
(A, v), (A,w) and real numbers α, β it holds that

f (A, z) = αf (A, v) + βf (A,w)

where z = αv + βw , i.e. z(S) = αv(S) + βw(S) for all S ⊆ A.
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Axiomatization of the Shapley value IV
Theorem (Shapley (1953))
A value function f is equal to the Shapley value if and only if it satisfies
effi ciency, the null player property, symmetry and linearity.

Remark: Linearity can be replaced by the weaker additivity axiom.

A value function f satisfies additivity if it satisfies linearity with
α = β = 1.
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Axiomatization of the Shapley value V
To give the proof we define the following.
For subset T ⊆ A, T 6= ∅, the unanimity game with respect to T is the
game (A, uT ) with

uT (S) =
{
1 if T ⊆ S
0 otherwise.

Observe:
1. In a unanimity game (A, uT ), every player a not in T is a null player.
2. In a unanimity game two players a and b are symmetric if both are in T
or both are not in T .
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Axiomatization of the Shapley value VI
Unanimity games form a basis in (game) vector space:
For any game (A, v),

v = ∑
T⊆A
T 6=∅

∆v (T )uT

with (Harsanyi) dividends given by

∆v (T ) = ∑
S⊆T

(−1)(#T−#S )v(S). (2)
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Axiomatization of the Shapley value VII
Proof of Shapley theorem
(i) It is easy to show that f Sh satisfies the four properties.

(ii) Let f be a value function satisfying the four properties. For T ⊆ A,
effi ciency, the null player property and symmetry imply that:

fa(A, uT ) =
{ 1

#T if a ∈ T
0 if a 6∈ T .
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Axiomatization of the Shapley value VIII
Since

v = ∑
T⊆A
T 6=∅

∆v (T )uT ,

with ∆v (T ) the dividend of T , when f also satisfies linearity we must
have that

f (A, v) = ∑
T⊆A
T 6=∅

∆v (T )f (A, uT ). (3)

So, f is uniquely determined by the four axioms. Since f Sh satisfies the
four properties, it follows that f = f Sh.
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Axiomatization of the Shapley value IX

Remarks:
1. There are other axiomatizations using a fixed and variable player set.

2. Strategic implementation

3. Computation

4. Other value functions: Nucleolus, Banzhaf value, τ-value, Equal
division solutions.
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The Banzhaf value I

6. The Banzhaf value

The Banzhaf value is the value function f B defined by:

f Ba (A, v) =
1
2n−1 ∑

S⊆A
a∈S

mSa (v), a ∈ A.

The Banzhaf value is not effi cient.
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The Banzhaf value II
Characterization of Banzhaf value
If players a and b collude then we obtain the game (A, vab) given by

vab(S) =
{
v(S \ {a, b}) if {a, b} 6⊆ S

v(S) if {a, b} ⊆ S .

Axioms A value function f satisfies collusion neutrality if for every game
(A, v) and a, b ∈ A, it holds that fa(vab) + fb(vab) = fa(v) + fb(v).

A value function f satisfies projection if fa(A, v) = v({a}), a ∈ A, when
v(S) = ∑a∈S v({a}) for all S ⊆ A.
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The Banzhaf value III
Theorem
A value function f is equal to the Banzhaf value if and only if it satisfies
collusion neutrality, projection, the null player property, symmetry and
linearity.

Observation: Consider T ⊂ A, T 6= ∅, a ∈ T and b 6∈ T . Then
(uT )ab = uT∪{b}.
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The Banzhaf value IV
Proof of Theorem
(i) It is easy to show that f B satisfies the five properties.

(ii) Let f be a value function satisfying the five properties. For T ⊆ A
with #T = 1, projection and the null player property imply that:

fa(A, uT ) =
{
1 if a ∈ T
0 if a 6∈ T .
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The Banzhaf value V
Proceeding by induction, suppose that f (A, uT ′) is uniquely determined if
#T ′ < #T . By collusion neutrality, for a, b ∈ T , a 6= b, it holds that

fa(A, uT ) + fb(A, uT ) = fa(A, uT \{b}) + fb(A, uT \{b})

since (uT \{b})ab = uT .

By the induction hypothesis fa(A, uT \{b}) and fb(A, uT \{b}) are uniquely
determined.

So, fa(A, uT ) + fb(A, uT ) is determined, and by symmetry fa(A, uT ) and
fb(A, uT ) are determined.
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The Banzhaf value VI
Since

v = ∑
T⊆A
T 6=∅

∆v (T )uT ,

with ∆v (T ) the dividend of T , by linearity f is uniquely determined by the
five axioms. Since f B satisfies the five properties, it follows that
f = f B .
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The Banzhaf value VII
Adapting the proxy agreement property to obtain another characterization
of the Shapley value:

Axiom A value function f satisfies the grand proxy agreement property
if for all (A, v) ∈ GA and any pair a, b ∈ A it holds that

∑
h∈A

fh(A, v) = ∑
h∈A

fh(A, vab).

Theorem
A value function f is equal to the Shapley value if and only if it satisfies
the grand proxy agreement property, projection, the null player property,
symmetry and linearity.
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Equal division I

7. Equal division

Definition The equal division solution is the solution f ED defined as:

f EDa (A, v) =
v(A)
#A

for all a ∈ A.

Theorem
Let #A ≥ 3. A value function f on GA is equal to the equal division
solution if and only if it satisfies effi ciency, symmetry and collusion
neutrality.
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Equal division II
An impossibility result:

Theorem
Let #A ≥ 3. There is no solution on GA that satisfies effi ciency, collusion
neutrality and the null player property.
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Equal division III

Let #A ≥ 3. For λ ∈ IRA++, define

f λ
a (A, v) =

λa

∑b∈A λb
v(A) for all (A, v) ∈ GA.

Theorem
Let #A ≥ 3. A solution f on GA satisfies effi ciency, collusion neutrality
and additivity if and only if there exists a vector of weights λ ∈ XA such
that f = f λ.

Remark: Note that as a corollary it follows that adding symmetry yields a
characterization of the equal division solution. However, we showed before
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Equal division IV
that these axioms are not logically independent and we can do without
additivity.

Theorem
Let #A ≥ 3. A solution f on GA satisfies effi ciency and collusion
neutrality if and only if there is a function
L : IR→ IRA++ such that f (A, v) = f L(v (A))(A, v).

Corollary
A solution satisfies effi ciency and collusion neutrality if and only if the
payoff allocation in every game v only depends on v(A).
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Equal division V
Properties/Solutions f Sh f Ba f ED f λ,λ ∈ XA Impossibility

Effi ciency x x x x
Collusion neutrality x x x x

Symmetry x x x
Null player property x x x

Linearity x x x

Table: Characterizing properties of solutions
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Equal division VI
Considering Shapley (1953)’s axioms, the equal division solution satisfies
effi ciency, symmetry and addivitity, but it does not satisfy the null player
property.

Recall that player a ∈ A is a null player if all its marginal contributions are
zero.

Replacing null players by nullifying players (also called zero players)
characterizes the equal division solution.
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Equal division VII
Player a ∈ A is a nullifying player in game (A, v) if all coalitions
containing this player earn zero worth, i.e. if v(S) = 0 for all S ⊆ A with
a ∈ S .

Axiom A value function f satisfies the nullifying player property if a
being a nullifying player in (A, v) implies that fa(A, v) = 0.
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Equal division VIII

Theorem
A value function f is equal to the equal division solution if and only if it
satisfies effi ciency, symmetry, linearity and the nullifying player property.

The proof of uniqueness is similar to Shapley (1953) but using the
standard basis instead of the unanimity basis:
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The Nucleolus I

8. The Nucleolus

The nucleolus is the unique value function given by the lexicographic
smallest 2n-dimensional vector of the excesses, i.e. the nucleolus is the
unique payoff vector x that minimizes the maximum of the excesses
(dissatisfactions)
e(S , x) = v(S)−∑a∈S xa.

If the Core is non-empty, the nucleolus is in the core.

The Nucleolus is not linear.

Remark: The nucleolus is characterized by effi ciency, the null player
property, symmetry and another reduced game consistency.
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Concluding remarks I

9. Concluding remarks

We discussed several solutions for cooperative (transferable utility) games.

Applied to voting games, the Shapley value gives the Shapley-Shubik
index, and the Banzhaf value gives the Banzhaf index.

Applied to ranking methods, the Shapley value gives the β-measure.

Other applications of cooperative games are, Bankruptcy games,
Sequencing games, Assignment (Market) games, Cost Sharing game, etc.

Generalizations of cooperative transferable utility games are, for example,
Nontransferable (NTU) games, Partition function form games, Restricted
cooperation, Ordered coalitions, etc.
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