PAC Learning from a Strategic Crowd

Dinesh Garg IBM Research - Bangalore

Joint work with Sourangshu Bhattacharya, S. Sundararajan, and Shirish Shevade

March 17, 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Data is New Natural Resource

- Ginni Rometty, CEO, IBM

 3

Amazon's Mechanical Turk (M-Turk)

March 17, 2016 3 / 36

(日) (同) (三) (三)

Human Intelligence Tasks (HITs)

amazonmechanical turk	Your Account HITs	Qualifications	363,428 HITs available now		<u>Sign In</u>
All HITs HITs Available To You HITs Assigned To You					
Find HITS • containing		that pay	at least \$ 0.00	for which you are qualified require Master Qualification	0
HITs containing 'classify'					
1-10 of 10 Results					
Sort by: HITs Available (most first) 🔹 🚳	Show all details Hide all details				
Classify Receipt				View a HIT in	this group
Requester: Jon Brelig	HIT Expiration Date:	Oct 28, 2015 (6 days	23 hours) Reward:	\$0.02	
	Time Allotted:	20 minutes			
Find and list craft shows, fairs and festivals in the USA25 cent additional bonus PER HIT available View a HIT in this group					
Requester: Craft Listings	HIT Expiration Date:	Oct 6, 2016 (50 week	s 1 day) Reward:	\$0.20	
	Time Allotted:	60 minutes			
Classify short video for suitability to children: language = GERMAN View a HIT in this group					
Requester: Amazon-Tahoe	HIT Expiration Date:	Nov 4, 2015 (1 week	6 days) Reward:	\$1.00	
	Time Allotted:	45 minutes			
Draw outlines around businesses on Google Maps (2-3 min/HIT, multiple available) View a HIT in this gro					this group
Requester: Consumer Survey Research	HIT Expiration Date:	Oct 23, 2015 (1 day 1	.8 hours) Reward:	\$0.20	
	Time Allotted:	45 minutes			
Listen and answer questions about an AUDIO recording and translate from FRENCH View a HIT in this group					this group
	UIT Expiration Date:	Oct 23 2015 (1 day 5	tt houre) Reward:	<u>*0.03</u>	-41 🍫 8:55 AM

Dinesh Garg (IBM Research)

(日) (同) (三) (三)

э

Data Labeling: Not a Child's Play

▲ 同 ▶ → 三 ▶

Data Labeling: Not a Child's Play

3

- < ∃ →

A (1) > A (2) > A

Data Labeling: Not a Child's Play

э

- ∢ ≣ →

Prior Work

3

イロト 不得 トイヨト イヨト

Binary Labeling: A Mental Model

Annotators:

- Multiple noisy human annotators
- Noise could be due to human error, lack of expertise, or even intentional
- Expertise level of an annotator can be expressed by its noise rate
- Each annotator needs to be paid

Learner:

• Goal is to obtain good quality labels at minimum cost

(日) (同) (三) (三)

Binary Labeling: Problem Setup

3

イロト イポト イヨト イヨト

March 17, 2016 8 / 36

3

イロト イポト イヨト イヨト

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for the learned classifier h at (3) Minimum Cost.

[1] L.G. Valiant, "A Theory of Learnable", Communications of the ACM, 27:1134-1142, 1984,-

Dinesh Garg (IBM Research)

Learning from a Strategic Crowd

(1) Aggregation Rule: Minimum Disagreement Algorithm

Input: Labeled examples from *n* annotators. **Output:** A hypothesis $h^* \in \mathscr{C}$ **Algorithm:**

- Let $\{(x_j^i, y_j^i) \mid i = 1, 2, ..., n; j = 1, ..., m_i\}$ be the labeled examples.
- Ouput a hypothesis h* that minimally disagrees with the given labels (use any tie breaking rule). That is,

$$h^* \in rgmin_{h \in \mathscr{C}} \sum_{i=1}^n \sum_{j=1}^{m_i} \mathbf{1}(h(x^i_j) \neq y^i_j)$$

Properties of the MDA

- Does not require the knowledge of annotators' noise rates η_i (Analysis would require !!)
- Does not require the knowledge of sampling distribution D

Dinesh Garg (IBM Research)

Learning from a Strategic Crowd

March 17, 2016 10 / 36

3

(日) (周) (三) (三)

Learner's Problem: "Which annotation plan would guarantee me (ϵ, δ) PAC bound?"

- 4 回 ト - 4 回 ト

Learner's Problem: "Which annotation plan would guarantee me (ϵ, δ) PAC bound?"

Assumption: Learner precisely knows the noise rate η_i of every annotator i

・ 同 ト ・ ヨ ト ・ ヨ ト

Learner's Problem: "Which annotation plan would guarantee me (ϵ, δ) PAC bound?"

Assumption: Learner precisely knows the noise rate η_i of every annotator *i*

Theorem (Feasible Annotation Plan for MDA)

The MDA will satisfy PAC bound if the annotation plan $\mathbf{m} = (m_1, m_2, \dots, m_n)$ satisfies:

$$\log(N/\delta) \le \sum_{i=1}^{n} m_i \psi(\eta_i)$$
 (1)

where concept class is finite, i.e. $\textit{N}=|\mathscr{C}|<\infty$ and $\forall i=1,2,\ldots,\textit{n},$ we have

- $0 < \eta_i < 1/3$
- $\psi(\eta_i) = -\log\left[1 \epsilon\left(1 \exp\left(\frac{3\eta_i 1}{8}\right)\right)\right].$

D. Garg, S. Bhattacharya, S. Sundararajan, S. Shevade, "Mechanism Design for Cost Optimal PAC Learning in the Presence of Strategic Noisy Annotators", Uncertainty in Artificial Intelligence (UAI), 275-285, 2012.

Dinesh Garg (IBM Research)

Learning from a Strategic Crowd

March 17, 2016 10 / 36

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proof Sketch

Probability of an ϵ -bad hypothesis h having lower empirical error than c_t

 $Pr^{(m_1,...,m_n)}[L_e(h) \le L_e(c_t)] = Pr\{\# \text{ samples under leaf } A \ge \# \text{ samples under leaf } B\}$

3

イロト イポト イヨト イヨト

(3) Cost of Annotation

Assumptions:

- Each annotator *i* incurs a cost of $c(\eta_i)$ for labeling one data point
- The cost function $c(\cdot)$ is the same for all the annotators
- $c(\cdot)$ is bounded, continuously differentiable, and strictly decreasing function
- Function $c(\cdot)$ is a common knowledge

A D A D A D A

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator i
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator *i*
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal ProblemMinimize
 m_1, m_2, \dots, m_n $\sum_{i=1}^n c(\eta_i) m_i$ subject to $\log(N/\delta) \leq \sum_{i=1}^n \psi(\eta_i) m_i$ $0 \leq m_i \ \forall i$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator *i*
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Learner's Problem:

- Learner is using MDA as an aggregation rule to learn a binary classifier
- Learner precisely knows the cost (equivalently, noise rates η_i) of each annotator i
- Learner wants to ensure PAC learning with parameters (ϵ, δ)
- Learner wants to minimize the cost of a feasible annotation plan

イロト 不得 トイヨト イヨト

Definition (Near Optimal Allocation Rule - NOAR)

Let i^* be the annotator having minimum value for *cost-per-quality* given by $c(\eta_i)/\psi(\eta_i)$. The learner should buy $\lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil$ number of examples from such an annotator.

Dinesh Garg (IBM Research)

Learning from a Strategic Crowd

March 17, 2016 13 / 36

Theorem

Let COST be the total cost of purchase incurred by the Near Optimal Allocation Rule. Let OPT be the optimal value of the ILP. Then,

$$OPT \leq COST \leq OPT \left(1 + rac{1}{m_0}
ight)$$

where $m_0 = \log\left(\frac{1}{1-\epsilon}\right)$

Proof:

$$COST = c(\eta_{i^*}) \lceil \log(N/\delta)/\psi(\eta_{i^*}) \rceil$$

$$\leq \log(N/\delta)c(\eta_{i^*})/\psi(\eta_{i^*}) + c(\eta_{i^*})$$

$$\leq OPT + c(\eta_{i^*})$$

$$\leq OPT + m_0c(\eta_{i^*})/m_0$$

$$\leq OPT + OPT/m_0$$

くほと くほと くほと

3. 3

< (T) > <

Let us Face the Reality

3

- < ∃ →

< (T) > <

Let us Face the Reality

Learner does not know the cost (equivalently, noise rate) of any annotator

Let us Face the Reality

Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Let us Face the Reality

► Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Let us Face the Reality

► Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

Let us Face the Reality

► Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

Estimation

Let us Face the Reality

▶ Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST

A D A D A D A

Let us Face the Reality

► Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) $> \delta$

くほと くほと くほと

Let us Face the Reality

► Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) $> \delta$
- Elicitation

くほと くほと くほと

Let us Face the Reality

▶ Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) $> \delta$
- Elicitation
 - Invite annotators to report (bid) their costs (equivalently, noise rates)

- 4 週 ト - 4 三 ト - 4 三 ト

Let us Face the Reality

Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

▶ Learner can not compute the PAC annotation plan because $\psi(\eta_i)$ is required for this: $\log(N/\delta) \leq \sum_{i=1}^{n} \psi(\eta_i) m_i$

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) > δ
- Elicitation
 - Invite annotators to report (bid) their costs (equivalently, noise rates)
 - Setup an auction to decide the work (contract) size and payment for annotators
Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

▶ Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) $> \delta$

Elicitation

- Invite annotators to report (bid) their costs (equivalently, noise rates)
- Setup an auction to decide the work (contract) size and payment for annotators
- Challenge: If annotators misreport noise rates, we are back to square one!!

(日) (周) (三) (三)

Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

▶ Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) $> \delta$

Elicitation

- Invite annotators to report (bid) their costs (equivalently, noise rates)
- Setup an auction to decide the work (contract) size and payment for annotators
- Challenge: If annotators misreport noise rates, we are back to square one!!

(日) (周) (三) (三)

Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

► Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

Learner can not compute the PAC annotation plan because ψ(η_i) is required for this: log(N/δ) ≤ ∑ⁿ_{i=1} ψ(η_i)m_i

Options Available with Learner

- Estimation
 - Overestimation \Rightarrow Excess examples procured by NOAR \Rightarrow Higher COST
 - Underestimation \Rightarrow **Pr**(ϵ -bad hypothesis gets picked by NOAR) $> \delta$
- Elicitation
 - Invite annotators to report (bid) their costs (equivalently, noise rates)
 - Setup an auction to decide the work (contract) size and payment for annotators
 - Challenge: If annotators misreport noise rates, we are back to square one!!

Goal: Design a Truthful & Cost Optimal Auction for PAC Learning via MDA.

イロト 不得下 イヨト イヨト

Payment Mechanisms

Dinesh Garg (IBM Research)

3

イロト イポト イヨト イヨト

イロト 不得下 イヨト イヨト 二日

3

イロト 不得 トイヨト イヨト

3

イロト 不得 トイヨト イヨト

Dinesh Garg (IBM Research)

3

イロト 不得 トイヨト イヨト

Auction Framework for Incomplete Info Setting

Bids

- ▶ Annotator *i* bids *b_i* (could be different than his true cost *c_i*)
- ▶ Bids are translated into equivalent noise rates: $\hat{\eta}_i = c^{-1}(b_i) \in I_i = [0, 1/3]$
- Let $I = I_1 \times I_2 \ldots \times I_n$
- The bid vector is given by $\hat{\eta} = (\hat{\eta}_1, \hat{\eta}_2, \dots, \hat{\eta}_n) \in I$

Auction Framework for Incomplete Info Setting

- Task Allocation Mechanism $a(\cdot)$
 - ▶ Learner uses an allocation rule $a: I \mapsto \mathbb{N}_0^n$ to award the contracts
- Payment Mechanism $p(\cdot)$
 - Learner uses a payment rule $p: I \mapsto \mathbb{R}^n$ to pay the annotators
- $\bullet \ \ Mechanism \ \mathcal{M}$
 - A pair of allocation and payment mechanisms is called mechanism $\mathcal{M} = (a, p)$
- Otilities
 - Annotator *i* accumulates following utility when bid vector is $\hat{\eta}$

$$u_i(\hat{\eta};\eta_i) = p_i(\hat{\eta}) - a_i(\hat{\eta})c(\eta_i)$$

▶ To compute this utility, annotator *i* must know the bids of others

(人間) トイヨト イヨト

Common Prior Assumption and Expected Utility

Assumptions (IPV Model):

- Noise rate η_i gets assigned via an independent random draw from interval [0, 1/3]
- $\phi_i(\cdot)$ and $\Phi_i(\cdot)$ denote the corresponding prior density and CDF respectively
- The joint prior $(\phi(\cdot) = \prod_{i=1}^{n} \phi_i(\cdot))$ is a common knowledge
- Expected Allocation Rule $\alpha_i(\cdot)$

$$\alpha_i(\hat{\eta}_i) = \int_{I_{-i}} \mathsf{a}_i(\hat{\eta}_i, \hat{\eta}_{-i}) \phi_{-i}(\hat{\eta}_{-i}) \mathsf{d}\hat{\eta}_{-i}$$

• Expected Payment Rule $\pi_i(\cdot)$

$$\pi_i(\hat{\eta}_i) = \int_{I_{-i}} p_i(\hat{\eta}_i, \hat{\eta}_{-i}) \phi_{-i}(\hat{\eta}_{-i}) d\hat{\eta}_{-i}$$

• Expected Utility $U_i(\cdot)$

$$U_i(\hat{\eta}_i;\eta_i) = \pi_i(\hat{\eta}_i) - \alpha_i(\hat{\eta}_i)c(\eta_i)$$

Dinesh Garg (IBM Research)

Optimal Auction Design for Incomplete Info Setting

$$\begin{split} & \underset{a(\cdot),p(\cdot)}{\text{Minimize}} \quad \Pi(a,p) = \sum_{i=1}^{n} \int_{0}^{1/3} \pi_{i}(t_{i}) \phi_{i}(t_{i}) dt_{i} \text{ (Procurement Cost)} \\ & \text{Subject to} \quad \log(N/\delta) \leq \sum_{i} a_{i}(\eta_{i},\eta_{-i}) \psi(\eta_{i}) \ \forall (\eta_{i},\eta_{-i}) \in I \text{ (PAC Constraint)} \\ & (a,p) \text{ satisfies } BIC \text{ (BIC Constraint)} \\ & \pi_{i}(\eta_{i}) \geq \alpha_{i}(\eta_{i}) c(\eta_{i}) \ \forall \eta_{i} \in I_{i}, \forall i \text{ (IR Constraint)} \end{split}$$

A Mechanism is said to be

- Bayesian Incentive Compatible (BIC) if for every annotator *i*, U_i(·) is maximized when *η̂_i* = η_i, i.e., U_i(η_i; η_i) ≥ U_i(*η̂_i*; η_i) ∀*η̂_i* ∈ I_i.
- Individually Rational (IR) if no annotator loses (in expected sense) anything by reporting true noise rates, i.e., $\pi_i(\eta_i) \alpha_i(\eta_i)c(\eta_i) \ge 0 \forall \eta_i \in I_i$.

イロト 不得下 イヨト イヨト

BIC Characterization: Myerson's Theorem

An allocation rule *a* is said to be Non-decreasing in Expectation (NDE) if we have $\alpha_i(\eta_i) \ge \alpha_i(\hat{\eta_i}) \ \forall \eta_i > \hat{\eta_i}$

Theorem (Myerson 1981)

Mechanism $\mathcal{M} = (a, p)$ is a BIC mechanism iff

- Allocation rule a(·) is NDE, and
- Expected payment rule satisfies:

$$egin{array}{rll} U_i(\eta_i)&=&U_i(0)-\int_0^{\eta_i}lpha_i(t_i)c'(t_i)dt_i\ \Rightarrow&\pi_i(\eta_i)&=&lpha_i(\eta_i)c(\eta_i)+U_i(0)-\int_0^{\eta_i}lpha_i(t_i)c'(t_i)dt_i \end{array}$$

Roger Myerson (Winner of 2007 Nobel Prize in Economics)

^[1] R. B. Myerson. Optimal Auction Design. Math. Operations Res., 6(1):58 -73, Feb. 1981.

$$\begin{array}{ll} \underset{a(\cdot),p(\cdot)}{\text{Minimize}} & \Pi(a,p) = \sum_{i=1}^{n} \int_{0}^{1/3} \pi_{i}(t_{i})\phi_{i}(t_{i})dt_{i} \text{ (Procurement Cost)} \\ \text{Subject to} & \log(N/\delta) \leq \sum_{i} a_{i}(\eta_{i},\eta_{-i})\psi(\eta_{i}) \; \forall (\eta_{i},\eta_{-i}) \in I \text{ (PAC Constraint)} \\ & \alpha_{i}(\cdot) \text{ is non-decreasing (BIC Constraint 1)} \\ & \pi_{i}(\eta_{i}) = \alpha_{i}(\eta_{i})c(\eta_{i}) + U_{i}(0) - \int_{0}^{\eta_{i}} \alpha_{i}(t_{i})c'(t_{i})dt_{i} \text{ (BIC Constraint 2)} \\ & \pi_{i}(\eta_{i}) \geq \alpha_{i}(\eta_{i})c(\eta_{i}) \; \forall \eta_{i} \in I_{i}, \forall i \text{ (IR Constraint)} \end{array}$$

æ

- ∢ ≣ →

Image: A math a math

$$\begin{array}{ll} \underset{a(\cdot),p(\cdot)}{\text{Minimize}} & \Pi(a,p) = \sum_{i=1}^{n} \int_{0}^{1/3} \pi_{i}(t_{i})\phi_{i}(t_{i})dt_{i} \text{ (Procurement Cost)} \\ \text{Subject to} & \log(N/\delta) \leq \sum_{i} a_{i}(\eta_{i},\eta_{-i})\psi(\eta_{i}) \; \forall (\eta_{i},\eta_{-i}) \in I \text{ (PAC Constraint)} \\ & \alpha_{i}(\cdot) \text{ is non-decreasing (BIC Constraint 1)} \\ & \pi_{i}(\eta_{i}) = \alpha_{i}(\eta_{i})c(\eta_{i}) + U_{i}(0) - \int_{0}^{\eta_{i}} \alpha_{i}(t_{i})c'(t_{i})dt_{i} \text{ (BIC Constraint 2)} \\ & \pi_{i}(\eta_{i}) \geq \alpha_{i}(\eta_{i})c(\eta_{i}) \; \forall \eta_{i} \in I_{i}, \forall i \text{ (IR Constraint)} \end{array}$$

Insights:

• If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff $U_i(0) \ge 0$

< 🗇 🕨 < 🖃 🕨

$$\begin{array}{ll} \underset{a(\cdot),p(\cdot)}{\text{Minimize}} & \Pi(a,p) = \sum_{i=1}^{n} \int_{0}^{1/3} \pi_{i}(t_{i})\phi_{i}(t_{i})dt_{i} \text{ (Procurement Cost)} \\ \text{Subject to} & \log(N/\delta) \leq \sum_{i} a_{i}(\eta_{i},\eta_{-i})\psi(\eta_{i}) \; \forall (\eta_{i},\eta_{-i}) \in I \text{ (PAC Constraint)} \\ & \alpha_{i}(\cdot) \text{ is non-decreasing (BIC Constraint 1)} \\ & \pi_{i}(\eta_{i}) = \alpha_{i}(\eta_{i})c(\eta_{i}) + U_{i}(0) - \int_{0}^{\eta_{i}} \alpha_{i}(t_{i})c'(t_{i})dt_{i} \text{ (BIC Constraint 2)} \\ & \pi_{i}(\eta_{i}) \geq \alpha_{i}(\eta_{i})c(\eta_{i}) \; \forall \eta_{i} \in I_{i}, \forall i \text{ (IR Constraint)} \end{array}$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff $U_i(0) \ge 0$
- Because our goal is to minimize the objective function, we must have $U_i(0) = 0$

< 🗇 🕨 < 🖃 🕨

$$\begin{split} \underset{a(\cdot),p(\cdot)}{\text{Minimize}} & \Pi(a,p) = \sum_{i=1}^{n} \int_{0}^{1/3} \pi_{i}(t_{i}) \phi_{i}(t_{i}) dt_{i} \text{ (Procurement Cost)} \\ \text{Subject to} & \log(N/\delta) \leq \sum_{i} a_{i}(\eta_{i},\eta_{-i}) \psi(\eta_{i}) \ \forall (\eta_{i},\eta_{-i}) \in I \text{ (PAC Constraint)} \\ & \alpha_{i}(\cdot) \text{ is non-decreasing (BIC Constraint 1)} \\ & \pi_{i}(\eta_{i}) = \alpha_{i}(\eta_{i}) c(\eta_{i}) + U_{i}(0) - \int_{0}^{\eta_{i}} \alpha_{i}(t_{i}) c'(t_{i}) dt_{i} \text{ (BIC Constraint 2)} \\ & \pi_{i}(\eta_{i}) \geq \alpha_{i}(\eta_{i}) c(\eta_{i}) \ \forall \eta_{i} \in I_{i}, \forall i \text{ (IR Constraint)} \end{split}$$

Insights:

- If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff $U_i(0) \ge 0$
- Because our goal is to minimize the objective function, we must have $U_i(0) = 0$
- Using (BIC Constraint 2), objective becomes $\Pi(a, p) = \int_{I} \left(\sum_{i=1}^{n} v_i(x_i) a_i(x) \right) \phi(x) dx$

• $v_i(\eta_i) := c(\eta_i) - \frac{1 - \Phi_i(\eta_i)}{\phi_i(\eta_i)} c'(\eta_i)$ is virtual cost function (Note $v_i(\eta_i) \ge c(\eta_i)$)

Reduced Problem

Overall Problem

$$\begin{array}{ll} \underset{a(\cdot),p(\cdot)}{\text{Minimize}} & \Pi(a,p) = \int_{I} \left(\sum_{i=1}^{n} v_{i}(x_{i}) a_{i}(x) \right) \phi(x) dx \text{ (Procurement Cost)} \\ \text{Subject to} & \log(N/\delta) \leq \sum_{i} a_{i}(\eta_{i},\eta_{-i}) \psi(\eta_{i}) \ \forall(\eta_{i},\eta_{-i}) \in I \text{ (PAC Constraint)} \\ & \alpha_{i}(\cdot) \text{ is non-decreasing (BIC Constraint 1)} \end{array}$$

Insights:

- Keep aside (BIC Constraint 1) for the moment
- $\bullet\,$ It suffices to solve following problem for every possible profile $\eta\,$

 $\begin{array}{ll} \begin{array}{l} \mbox{Instance Specific ILP} \\ & \underset{a_1(\eta),\ldots,a_n(\eta)}{\mbox{Minimize}} & \sum_{i=1}^n v_i(\eta_i) a_i(\eta) (\mbox{Procurement Cost for profile } \eta) \\ & \mbox{Subject to} & \log(N/\delta) \leq \sum_i \psi(\eta_i) a_i(\eta) \ \forall (\eta_i, \eta_{-i}) \in I \ (\mbox{PAC Constraint}) \\ & a_i(\eta) \in \mathbb{N}_0 \ \forall i \end{array}$

イロト イポト イヨト イヨト

Solution Via Instance Specific ILP

- Instance specific ILP is similar to Primal Problem in complete info setting (replace $c(\eta_i)$ with $v_i(\eta_i)$)
- Instance specific ILP can be relaxed and solved approximately just like NOAR

Definition (Minimum Allocation Rule)

Let i^* be the annotator having minimum value for cost-per-quality given by $v_i(\eta_i)/\psi(\eta_i)$. The learner should buy $\left[\log(N/\delta)/\psi(\eta_{i^*})\right]$ number of examples from such an annotator.

Theorem

Let COST be the total cost of purchase incurred by the Minimum Allocation Rule. Let OPT be the optimal procurement cost. Then,

$$OPT \leq COST \leq OPT + c(\eta_{i^*}) \leq OPT(1+1/m_0)$$

where $m_0 = \log[1 - \epsilon]^{-1}$

イロト 不得下 イヨト イヨト 二日

What About (BIC Constraint 1) ?

Regularity Condition: $v_i(\cdot)/\psi(\cdot)$ is a non-increasing function.

If Regularity Condition is satisfied, then under the minimum allocation rule

- As η_i increases, the annotator i remains the winner if he/she is already the winner (with an increased contract size) or becomes the winner
- The allocation rule satisfies ND property (hence, NDE)
- The payment of annotator *i* is given by

$$p_i(\eta_i,\eta_{-i}) = a_i(\eta_i,\eta_{-i})c(\eta_i) - \int_0^{\eta_i} a_i(t_i,\eta_{-i})c'(t_i)dt_i$$

Winning annotator gets positive payment and others get zero payment

一日、

Near Optimal Auction Mechanism for PAC Learning

Under regularity condition of $v_i(\cdot)/\psi(\cdot)$ being a non-increasing function of η_i $a_i(\eta) = \begin{cases} \lceil \log(N/\delta)/\psi(\eta_i) \rceil &: \text{ if } \frac{v_i(\eta_i)}{\psi(\eta_i)} \leq \frac{v_j(\eta_j)}{\psi(\eta_j)} \forall j \neq i \\ 0 &: \text{ otherwise} \end{cases}$ $p_i(\eta) = \begin{cases} \left\lceil \frac{\log(N/\delta)}{\psi(\eta_i)} \right\rceil c(q_i(\eta_{-i})) &: \text{ for winner} \\ 0 &: \text{ otherwise} \end{cases}$ $q_i(\eta_{-i}) = \inf \left\{ \hat{\eta}_i \mid \frac{v_i(\hat{\eta}_i)}{\psi(\hat{\eta}_i)} \leq \frac{v_j(\eta_j)}{\psi(\eta_j)} \forall j \neq i \right\}$ = smallest bid value sufficient to win the contract for annotator i

Theorem

Suppose Regularity Condition holds. Then, above mechanism is an approximate optimal mechanism satisfying BIC, IR, and PAC constraints. The approximation guarantee of this mechanism is given by $ALG \leq OPT + v_{i^*}(\eta_{i^*}) \leq OPT(1 + 1/m_0)$.

Dinesh Garg (IBM Research)

Learning from a Strategic Crowd

March 17, 2016 26 / 36

Conclusions

- Analyzed the PAC learning model for noisy data from multiple annotators
- Analyzed complete and incomplete information scenarios
- Essentially, we identify the annotator whose (cost/quality) ratio is the least
- Surprisingly, greedily buying all the examples from such an annotator is near optimal

Future Extensions

- What if the cost function $c(\cdot)$ is not a common knowledge?
- What if the cost function $c(\cdot)$ is different for different annotators?
- Annotators having a capacity constraint and/or learner having a budget constraint
- Work with general hypothesis class (e.g. linear models of classification)
- Other learning tasks multiclass/multilabel classification, regression
- What about sequentially deciding the tasks assignments?

- 31

(人間) システン イラン

Thank You!!

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Backup Slides

∃ →

< 🗇 🕨 🔹

.∃ →

2

Aspects of Crowdsorcing Systems

Dinesh Garg (IBM Research)

Aspects of Crowdsorcing Systems

Dinesh Garg (IBM Research)

Learning from a Strategic Crowd

Proof Sketch

Events

- E₁(h, m₁,..., m_n): The empirical error of a given hypothesis h ∈ C is no more than the empirical error of the true hypothesis c_t, i.e. L_e(h) ≤ L_e(c_t).
- E₂(h, m₁,..., m_n): The empirical error of a given hypothesis h ∈ C is the minimum across all hypotheses in the class C, i.e. L_e(h) ≤ L_e(h') ∀h' ∈ C.
- $E_3(h, m_1, \ldots, m_n)$: MDA outputs a given hypothesis h.
- $E_4(\epsilon, m_1, \ldots, m_n)$: MDA outputs an ϵ -bad hypothesis.

Observations

- $E_3(h, m_1, \ldots, m_n) \subseteq E_2(h, m_1, \ldots, m_n) \subseteq E_1(h, m_1, \ldots, m_n)$
- $\mathbf{Pr}^{(m_1,\ldots,m_n)}[E_4(\epsilon)] \le (N-1) \times \begin{bmatrix} \max_{h \in \mathscr{C}, h \text{ is } \epsilon \text{-bad}} \mathbf{Pr}^{(m_1,\ldots,m_n)}[E_1(h)] \end{bmatrix}$
- If annotation plan (m_1, \ldots, m_n) satisfies the following condition, then MDA will satisfy PAC bound.

$$\frac{\max_{h \text{ is } \epsilon \text{-bad}} \mathsf{Pr}^{(m_1, \dots, m_n)}[E_1(h)]}{\leq \delta/N}$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proof Sketch

Probability of an ϵ -bad hypothesis h having lower empirical error than c_t

 $Pr^{(m_1,...,m_n)}[L_e(h) \le L_e(c_t)] = Pr\{\# \text{ samples under leaf } A \ge \# \text{ samples under leaf } B\}$

3

イロト イポト イヨト イヨト

Special Case: Single Annotator

When $\eta = 0$

- Easy to show that sample complexity m_0 satisfies $m_0 \leq \log(N/\delta)/\log[1-\epsilon]^{-1}$
- The range of η_i in previous theorem can be extended to include $\eta_i = 0$ by having $\psi(0) = \log[1 \epsilon]^{-1}$

When $\eta = 1/3$

- Angluin and Laird proposed following bound for single annotator, for $0 \le \eta < 1/2$ $\psi(\eta_i) = \log \left[1 - \epsilon \left(1 - \exp\left(-(1 - 2\eta_i)^2/2\right)\right)\right]^{-1}$
- The range of η_i in previous theorem can be extended to include $\eta_i = 1/3$ by having $\psi(1/3) = \log[1 \epsilon(1 \exp(-1/18))]^{-1}$

[1] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.

$$\pi_i(\eta_i) = \alpha_i(\eta_i)c(\eta_i) + U_i(0) + \int_{\eta_i}^0 \alpha_i(t_i)c'(t_i)dt_i$$

$$\Rightarrow \pi_i(\eta_i) = \alpha_i(\eta_i)c(\eta_i) + \pi_i(0) - \alpha_i(0)c(0) + \int_{\eta_i}^0 \alpha_i(t_i)d[c(t_i)]$$

3

< 🗇 🕨

$$\pi_{i}(\eta_{i}) = \alpha_{i}(\eta_{i})c(\eta_{i}) + U_{i}(0) + \int_{\eta_{i}}^{0} \alpha_{i}(t_{i})c'(t_{i})dt_{i}$$

$$\Rightarrow \pi_{i}(\eta_{i}) = \alpha_{i}(\eta_{i})c(\eta_{i}) + \pi_{i}(0) - \alpha_{i}(0)c(0) + \int_{\eta_{i}}^{0} \alpha_{i}(t_{i})d[c(t_{i})]$$

$$\uparrow$$

$$\alpha_{i}(\eta)$$

$$c(1/3)$$

$$c(\eta) \rightarrow c(0)$$

Dinesh Garg (IBM Research)

3

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)

Dinesh Garg (IBM Research)