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Data is New Natural Resource

- Ginni Rometty, CEO, IBM
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Amazon’s Mechanical Turk (M-Turk)
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Human Intelligence Tasks (HITs)
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Data Labeling: Not a Child’s Play

Requester /Learner

Labeling Tasks

Crowdworkers / Annotators
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How to aggregate the labels ?

Who should annotate what?

How much to pay for?
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Sequential Decision (aka 
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MDP, MAB, & 
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Methods
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Binary Labeling: A Mental Model

Crowdworkers
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Annotators:

Multiple noisy human annotators

Noise could be due to human error, lack of expertise, or even intentional

Expertise level of an annotator can be expressed by its noise rate

Each annotator needs to be paid

Learner:

Goal is to obtain good quality labels at minimum cost
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Binary Labeling: Problem Setup

Crowdworkers
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풊 ,풚풎풊
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Noisy Labeled Data

X
Classifier h

Finite Concept Class C

tc

h

tc
h

hct
X

annotation plan m := (m1,m2, . . . . ,mn)

error rate of h := PrD(ct∆h)

ε-bad hypothesis := PrD(ct∆h) > ε

PAC Bound := Prm(PrD(ct∆h) > ε) < δ

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for
the learned classifier h at (3) Minimum Cost.

—————
[1] L.G. Valiant, “A Theory of Learnable”, Communications of the ACM, 27:1134-1142, 1984.

Dinesh Garg (IBM Research) Learning from a Strategic Crowd March 17, 2016 8 / 36



Binary Labeling: Problem Setup

Crowdworkers

1

i

n

Requester /Learner

Labeling Tasks

Task Allocation 
Mechanism

(Random Sampler D) 

Oracle

Aggregation Rule

Payment Mechanism

풙ퟏ풊 ,풙ퟐ풊 ,⋯풙풎풊
풊

풙ퟏ풊 ,풚ퟏ풊 , 풙ퟐ풊 ,풚ퟐ풊 ,⋯ , 풙풎풊
풊 ,풚풎풊

풊

Noisy Labeled Data

X
Classifier h

Finite Concept Class C

tc

h

tc
h

hct
X

annotation plan m := (m1,m2, . . . . ,mn)

error rate of h := PrD(ct∆h)

ε-bad hypothesis := PrD(ct∆h) > ε

PAC Bound := Prm(PrD(ct∆h) > ε) < δ

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for
the learned classifier h at (3) Minimum Cost.

—————
[1] L.G. Valiant, “A Theory of Learnable”, Communications of the ACM, 27:1134-1142, 1984.

Dinesh Garg (IBM Research) Learning from a Strategic Crowd March 17, 2016 8 / 36



Binary Labeling: Problem Setup

Crowdworkers

1

i

n

Requester /Learner

Labeling Tasks

Task Allocation 
Mechanism

(Random Sampler D) 

Oracle

Aggregation Rule

Payment Mechanism

풙ퟏ풊 ,풙ퟐ풊 ,⋯풙풎풊
풊

풙ퟏ풊 ,풚ퟏ풊 , 풙ퟐ풊 ,풚ퟐ풊 ,⋯ , 풙풎풊
풊 ,풚풎풊

풊

Noisy Labeled Data

X
Classifier h

Finite Concept Class C

tc

h

tc
h

hct
X

annotation plan m := (m1,m2, . . . . ,mn)

error rate of h := PrD(ct∆h)

ε-bad hypothesis := PrD(ct∆h) > ε

PAC Bound := Prm(PrD(ct∆h) > ε) < δ

Goal: Design an (1) Aggregation Rule and an (2) Annotation Plan to ensure PAC bound for
the learned classifier h at (3) Minimum Cost.

—————
[1] L.G. Valiant, “A Theory of Learnable”, Communications of the ACM, 27:1134-1142, 1984.

Dinesh Garg (IBM Research) Learning from a Strategic Crowd March 17, 2016 8 / 36



(1) Aggregation Rule: Minimum Disagreement Algorithm

Input: Labeled examples from n annotators.
Output: A hypothesis h∗ ∈ C
Algorithm:

1 Let {
(
x ij , y

i
j

)
i = 1, 2, . . . , n; j = 1, . . . ,mi} be the labeled

examples.

2 Ouput a hypothesis h∗ that minimally disagrees with the
given labels (use any tie breaking rule). That is,

h∗ ∈ arg min
h∈C

n∑
i=1

mi∑
j=1

1(h(x ij ) 6= y i
j )

Properties of the MDA

Does not require the knowledge of annotators’ noise rates ηi (Analysis would require !!)

Does not require the knowledge of sampling distribution D
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(2) Annotation Plan for MDA [Complete Info. Setting]

Learner’s Problem: “Which annotation plan would guarantee me (ε, δ) PAC bound?”

Assumption: Learner precisely knows the noise rate ηi of every annotator i

Theorem (Feasible Annotation Plan for MDA)

The MDA will satisfy PAC bound if the annotation plan m = (m1,m2, . . . ,mn) satisfies:

log(N/δ) ≤
n∑

i=1

miψ(ηi ) (1)

where concept class is finite, i.e. N = |C | <∞ and ∀i = 1, 2, . . . , n, we have

0 < ηi < 1/3

ψ(ηi ) = − log
[
1− ε

(
1− exp

(
3ηi−1

8

))]
.

—————
D. Garg, S. Bhattacharya, S. Sundararajan, S. Shevade, “Mechanism Design for Cost Optimal PAC Learning in the
Presence of Strategic Noisy Annotators”, Uncertainty in Artificial Intelligence (UAI), 275-285, 2012.
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Proof Sketch
Probability of an ε-bad hypothesis h having lower empirical error than ct

Annotator delivers a

random and independent sample ),( yx
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Leaf ‘A’ Leaf ‘B’ Leaf ‘C’ Leaf ‘D’

Pr(m1,...,mn)[Le(h) ≤ Le(ct)] = Pr{# samples under leaf A ≥ # samples under leaf B}
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(3) Cost of Annotation

Assumptions:

Each annotator i incurs a cost of c(ηi ) for labeling one data point

The cost function c(·) is the same for all the annotators

c(·) is bounded, continuously differentiable, and strictly decreasing function

Function c(·) is a common knowledge

)( ic 

)0,0( 2/13/1

i

A more competitive annotator i means low ηi

He can earn more by selling his services (time)

It means his internal cost of annotation is high
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(1-2-3) Putting It All Together [Complete Info Setting]

Learner’s Problem:

Learner is using MDA as an aggregation rule to learn a binary classifier

Learner precisely knows the cost (equivalently, noise rates ηi ) of each annotator i

Learner wants to ensure PAC learning with parameters (ε, δ)

Learner wants to minimize the cost of a feasible annotation plan

Relaxed Primal Problem

Minimize
m1,m2,...mn

n∑
i=1

c(ηi )mi

subject to log(N/δ) ≤
n∑

i=1

ψ(ηi )mi

0 ≤ mi ∀i

Relaxed Dual Problem

Maximize
λ

λ log

(
N

δ

)
subject to λ ≤

c(ηi )

ψ(ηi )
∀i

0 ≤ λ

Definition (Near Optimal Allocation Rule - NOAR)

Let i∗ be the annotator having minimum value for cost-per-quality given by c(ηi )/ψ(ηi ). The
learner should buy dlog(N/δ)/ψ(ηi∗ )e number of examples from such an annotator.
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(1-2-3) Putting It All Together [Complete Info Setting]

Theorem
Let COST be the total cost of purchase incurred by the Near Optimal Allocation Rule.
Let OPT be the optimal value of the ILP. Then,

OPT ≤ COST ≤ OPT

(
1 +

1

m0

)
where m0 = log

(
1

1−ε

)

Proof:

COST = c(ηi∗)dlog(N/δ)/ψ(ηi∗)e
≤ log(N/δ)c(ηi∗)/ψ(ηi∗) + c(ηi∗)

≤ OPT + c(ηi∗)

≤ OPT + m0c(ηi∗)/m0

≤ OPT + OPT/m0
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Back to Binary Labeling Problem: Incomplete Info Setting

Let us Face the Reality

I Learner does not know the cost (equivalently, noise rate) of any annotator

So What?

I Learner can not compute the PAC annotation plan because ψ(ηi ) is required
for this: log(N/δ) ≤

∑n
i=1 ψ(ηi )mi

Options Available with Learner

I Estimation

- Overestimation ⇒ Excess examples procured by NOAR ⇒ Higher COST

- Underestimation ⇒ Pr(ε-bad hypothesis gets picked by NOAR) > δ

I Elicitation

- Invite annotators to report (bid) their costs (equivalently, noise rates)

- Setup an auction to decide the work (contract) size and payment for annotators

- Challenge: If annotators misreport noise rates, we are back to square one!!

Goal: Design a Truthful & Cost Optimal Auction for PAC Learning via MDA.
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Prior Work

Each agent reports his 
assessment TRUTHFULLY 

Each agent puts in his 
BEST EFFORT. 

Although, noise rates 
could be different for 
them while operating 
at his best effort level

Noise rates of the 
agents are KNOWN to 

the learner
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Auction Framework for Incomplete Info Setting
Bids

I Annotator i bids bi (could be different than his true cost ci )

I Bids are translated into equivalent noise rates: η̂i = c−1(bi ) ∈ Ii = [0, 1/3]

I Let I = I1 × I2 . . .× In

I The bid vector is given by η̂ = (η̂1, η̂2, . . . , η̂n) ∈ I

î

)(c

)0,0( 2/13/1i


ib
ic
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Auction Framework for Incomplete Info Setting

Task Allocation Mechanism a(·)
I Learner uses an allocation rule a : I 7→ Nn

0 to award the contracts

Payment Mechanism p(·)
I Learner uses a payment rule p : I 7→ Rn to pay the annotators

Mechanism M
I A pair of allocation and payment mechanisms is called mechanism
M = (a, p)

Utilities

I Annotator i accumulates following utility when bid vector is η̂

ui (η̂; ηi ) = pi (η̂)− ai (η̂)c(ηi )

I To compute this utility, annotator i must know the bids of others
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Common Prior Assumption and Expected Utility

Assumptions (IPV Model):

Noise rate ηi gets assigned via an independent random draw from interval [0, 1/3]

φi (·) and Φi (·) denote the corresponding prior density and CDF respectively

The joint prior
(
φ(·) =

∏n
i=1 φi (·)

)
is a common knowledge

Expected Allocation Rule αi (·)

αi (η̂i ) =

∫
I−i

ai (η̂i , η̂−i )φ−i (η̂−i )d η̂−i

Expected Payment Rule πi (·)

πi (η̂i ) =

∫
I−i

pi (η̂i , η̂−i )φ−i (η̂−i )d η̂−i

Expected Utility Ui (·)

Ui (η̂i ; ηi ) = πi (η̂i )− αi (η̂i )c(ηi )
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Optimal Auction Design for Incomplete Info Setting

Minimize
a(·),p(·)

Π(a, p) =
∑n

i=1

∫ 1/3

0

πi (ti )φi (ti )dti (Procurement Cost)

Subject to log(N/δ) ≤
∑

i
ai (ηi , η−i )ψ(ηi ) ∀(ηi , η−i ) ∈ I (PAC Constraint)

(a, p) satisfies BIC (BIC Constraint)

πi (ηi ) ≥ αi (ηi )c(ηi ) ∀ηi ∈ Ii , ∀i (IR Constraint)

A Mechanism is said to be

Bayesian Incentive Compatible (BIC) if for every annotator i , Ui (·) is maximized
when η̂i = ηi , i.e., Ui (ηi ; ηi ) ≥ Ui (η̂i ; ηi ) ∀η̂i ∈ Ii .

Individually Rational (IR) if no annotator loses (in expected sense) anything by
reporting true noise rates, i.e., πi (ηi )− αi (ηi )c(ηi ) ≥ 0 ∀ ηi ∈ Ii .
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BIC Characterization: Myerson’s Theorem

An allocation rule a is said to be Non-decreasing in Expectation (NDE) if
we have αi (ηi ) ≥ αi (η̂i ) ∀ηi > η̂i

Theorem (Myerson 1981)

Mechanism M = (a, p) is a BIC mechanism iff

1 Allocation rule a(·) is NDE, and

2 Expected payment rule satisfies:

Ui (ηi ) = Ui (0)−
∫ ηi

0

αi (ti )c ′(ti )dti

⇒ πi (ηi ) = αi (ηi )c(ηi ) + Ui (0)−
∫ ηi

0

αi (ti )c ′(ti )dti

Roger Myerson

(Winner of 2007 Nobel

Prize in Economics)

—————
[1] R. B. Myerson. Optimal Auction Design. Math. Operations Res., 6(1):58 -73, Feb. 1981.
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Back to Optimal Auction Design

Minimize
a(·),p(·)

Π(a, p) =
∑n

i=1

∫ 1/3

0

πi (ti )φi (ti )dti (Procurement Cost)

Subject to log(N/δ) ≤
∑

i
ai (ηi , η−i )ψ(ηi ) ∀(ηi , η−i ) ∈ I (PAC Constraint)

αi (·) is non-decreasing (BIC Constraint 1)

πi (ηi ) = αi (ηi )c(ηi ) + Ui (0)−
∫ ηi

0

αi (ti )c ′(ti )dti (BIC Constraint 2)

πi (ηi ) ≥ αi (ηi )c(ηi ) ∀ηi ∈ Ii , ∀i (IR Constraint)

Insights:

If (BIC Constraint 2) is satisfied then (IR Constraint) is satisfied iff Ui (0) ≥ 0

Because our goal is to minimize the objective function, we must have Ui (0) = 0

Using (BIC Constraint 2), objective becomes Π(a, p) =
∫
I

(
n∑

i=1

vi (xi )ai (x)

)
φ(x)dx

vi (ηi ) := c(ηi )− 1−Φi (ηi )
φi (ηi )

c ′(ηi ) is virtual cost function (Note vi (ηi ) ≥ c(ηi ))
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Reduced Problem

Overall Problem

Minimize
a(·),p(·)

Π(a, p) =

∫
I

(∑n

i=1
vi (xi )ai (x)

)
φ(x)dx (Procurement Cost)

Subject to log(N/δ) ≤
∑

i
ai (ηi , η−i )ψ(ηi ) ∀(ηi , η−i ) ∈ I (PAC Constraint)

αi (·) is non-decreasing (BIC Constraint 1)

Insights:

Keep aside (BIC Constraint 1) for the moment

It suffices to solve following problem for every possible profile η

Instance Specific ILP

Minimize
a1(η),...,an(η)

n∑
i=1

vi (ηi )ai (η)(Procurement Cost for profile η)

Subject to log(N/δ) ≤
∑

i
ψ(ηi )ai (η) ∀(ηi , η−i ) ∈ I (PAC Constraint)

ai (η) ∈ N0 ∀i
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Solution Via Instance Specific ILP

Instance specific ILP is similar to Primal Problem in complete info setting (replace
c(ηi ) with vi (ηi ))

Instance specific ILP can be relaxed and solved approximately just like NOAR

Definition (Minimum Allocation Rule)

Let i∗ be the annotator having minimum value for cost-per-quality given by vi (ηi )/ψ(ηi ).
The learner should buy dlog(N/δ)/ψ(ηi∗)e number of examples from such an annotator.

Theorem
Let COST be the total cost of purchase incurred by the Minimum Allocation Rule. Let
OPT be the optimal procurement cost. Then,

OPT ≤ COST ≤ OPT + c(ηi∗) ≤ OPT (1 + 1/m0)

where m0 = log[1− ε]−1
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What About (BIC Constraint 1) ?

Regularity Condition: vi (·)/ψ(·) is a non-increasing function.

If Regularity Condition is satisfied, then under the minimum allocation rule

As ηi increases, the annotator i remains the winner if he/she is already the winner
(with an increased contract size) or becomes the winner

The allocation rule satisfies ND property (hence, NDE)

The payment of annotator i is given by

pi (ηi , η−i ) = ai (ηi , η−i )c(ηi )−
∫ ηi

0

ai (ti , η−i )c ′(ti )dti

Winning annotator gets positive payment and others get zero payment
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Near Optimal Auction Mechanism for PAC Learning

Under regularity condition of vi (·)/ψ(·) being a non-increasing function of ηi

ai (η) =

{
dlog(N/δ)/ψ(ηi )e : if vi (ηi )

ψ(ηi )
≤ vj (ηj )

ψ(ηj )
∀j 6= i

0 : otherwise

pi (η) =

{ ⌈
log(N/δ)
ψ(ηi )

⌉
c(qi (η−i )) : for winner

0 : otherwise

qi (η−i ) = inf

{
η̂i |

vi (η̂i )

ψ(η̂i )
≤ vj(ηj)

ψ(ηj)
∀j 6= i

}
= smallest bid value sufficient to win the contract for annotator i

Theorem
Suppose Regularity Condition holds. Then, above mechanism is an approximate optimal
mechanism satisfying BIC, IR, and PAC constraints. The approximation guarantee of
this mechanism is given by ALG ≤ OPT + vi∗(ηi∗) ≤ OPT (1 + 1/m0).
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Conclusions

Analyzed the PAC learning model for noisy data from multiple annotators

Analyzed complete and incomplete information scenarios

Essentially, we identify the annotator whose (cost/quality) ratio is the least

Surprisingly, greedily buying all the examples from such an annotator is near

optimal

Future Extensions

What if the cost function c(·) is not a common knowledge?

What if the cost function c(·) is different for different annotators?

Annotators having a capacity constraint and/or learner having a budget constraint

Work with general hypothesis class (e.g. linear models of classification)

Other learning tasks - multiclass/multilabel classification, regression

What about sequentially deciding the tasks assignments?
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Thank You!!
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Backup Slides
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Aspects of Crowdsorcing Systems

Annotators

Qualities Fixed/Vary over 
Domain/Time

Availability Sleeping /Awake

Behavior Strategic/Non-
Strategic

Strategic in 
Reporting 

Labels/Bid/Both

Strategic in 
Exerting Efforts 

Task Assignment
Annotator Lead/ 

Learner Lead/ 
Random

Learner

Goals
Minimize Cost, 

Maximize Quality, 
Hybrid  

Budget Finite/Unbounded

Nature of Task

Labeling Binary/Multiclass/ 
Regression

Prediction
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Aspects of Crowdsorcing Systems

Aggregation 
Rule

Inductive One Shot/ 
Sequential

Transductive One Shot/ 
Sequential

Oracle 
Accessibility

Inaccessible

Instantaneous 
(By Paying)

Time Shifted 
(No Extra Cost)

Payment 
Mechanism

Posted Price

Auction Based
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Proof Sketch
Events

E1(h,m1, . . . ,mn): The empirical error of a given hypothesis h ∈ C is no
more than the empirical error of the true hypothesis ct , i.e. Le(h) ≤ Le(ct).

E2(h,m1, . . . ,mn): The empirical error of a given hypothesis h ∈ C is the
minimum across all hypotheses in the class C , i.e. Le(h) ≤ Le(h′) ∀h′ ∈ C .

E3(h,m1, . . . ,mn): MDA outputs a given hypothesis h.

E4(ε,m1, . . . ,mn): MDA outputs an ε-bad hypothesis.

Observations

E3(h,m1, . . . ,mn) ⊆ E2(h,m1, . . . ,mn) ⊆ E1(h,m1, . . . ,mn)

Pr(m1,...,mn)[E4(ε)] ≤ (N − 1)×
[

max
h ∈ C , h is ε-bad

Pr(m1,...,mn)[E1(h)]

]
If annotation plan (m1, . . . ,mn) satisfies the following condition, then MDA
will satisfy PAC bound.[

max
h is ε-bad

Pr(m1,...,mn)[E1(h)]

]
≤ δ/N (2)
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Proof Sketch
Probability of an ε-bad hypothesis h having lower empirical error than ct

Annotator delivers a

random and independent sample ),( yx
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Leaf ‘A’ Leaf ‘B’ Leaf ‘C’ Leaf ‘D’

Pr(m1,...,mn)[Le(h) ≤ Le(ct)] = Pr{# samples under leaf A ≥ # samples under leaf B}
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Special Case: Single Annotator
When η = 0

Easy to show that sample complexity m0 satisfies m0 ≤ log(N/δ)/ log[1− ε]−1

The range of ηi in previous theorem can be extended to include ηi = 0 by having
ψ(0) = log[1− ε]−1

When η = 1/3
Angluin and Laird proposed following bound for single annotator, for 0 ≤ η < 1/2

ψ(ηi ) = log
[
1− ε

(
1− exp

(
−(1− 2ηi )

2/2
))]−1

The range of ηi in previous theorem can be extended to include ηi = 1/3 by having
ψ(1/3) = log[1− ε(1− exp(−1/18))]−1

—————
[1] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
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Understanding Myerson’s Theorem

πi (ηi ) = αi (ηi )c(ηi ) + Ui (0) +

∫ 0

ηi

αi (ti )c ′(ti )dti

⇒ πi (ηi ) = αi (ηi )c(ηi ) + πi (0)− αi (0)c(0) +

∫ 0

ηi

αi (ti )d [c(ti )]

)( i

)0,0(

)(c
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