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Abstract

The term paper is mainly intended to demonstrate the use of ‘Multinomial Logit

Models’ to predict categorical data. Three types of unordered choice models have

been described namely, Generalised logit models, Conditional logit models and Mixed

logit models. All the models are presented through proper examples to understand

the models properly. Learning important softwares like SAS and LaTeX are also the

objectives of this term paper.
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1 Introduction

In several areas of study, we often come across dependent variables which are nominal

and have more than two categories. For instance, we might be interested in knowing

whether students have stayed in mainstream education, are in vocational training or have

left education altogether. This would be a three category nominal variable. We therefore

need methods that can model this type of dependent variable as well. Thus we can extend

the logistic regression model to do this. We call this extended method multinomial logistic

regression, and refer to logistic regression for dichotomous dependent variables as binary

logistic regression. If the response variable is polytomous and all the potential predictors

are discrete as well, we could describe the multiway contingency table by a log linear model.

But fitting a log linear model has two disadvantages:

• It has a larger number of parameters, many of which are not of interest. The log

linear model describes the joint distribution of all the variables, whereas the logistic

model describes only the conditional distribution of the response given the predictors.

• The log linear model is more complicated to interpret. However, the effect of X on Y

is a main effect. If we are analyzing a set of categorical variables and one of them is

clearly a “response” while the others are predictors, it is better to use logistic rather

than log linear models.

The following factors should be considered before using multinomial logistic regression:

• The sample size and any outlying cases.

• The dependent variable should be non-metric. For instance, we may use dichotomous,

nominal, and ordinal variables.

• Independent variables should be metric or dichotomous.

• Initial data analysis should be thorough and include careful univariate, bivariate and

multivariate assessment.
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• Multicollinearity should be evaluated.

The rest of the paper is organised as follows: Section 2 describes the theoretical frame-

work of Multinomial Logit Models. Section 3 demonstrates the models through appropriate

examples and is followed by concluding remarks in section 4.

2 Theoretical Framework

A multinomial model is a model which generalizes logistic regression by allowing for more

than two discrete outcomes. It models the relationship between a polytomous response

variable and a set of regressor variables, so as to predict the probabilities of the different

possible outcomes of a categorically distributed dependent variable. These polytomous re-

sponse models can be classified into two distinct types, depending on whether the response

variable has an ordered or unordered structure.

In an unordered model the polytomous response variable does not have an ordered

structure, i.e., the dependent variable is nominal as it falls into any one of a set of categories

which cannot be ordered in any meaningful way and for which there are more than two

categories. Multinomial logit is equivalent to a series of pairwise logit models. There are

basically 3 types of unordered models:

1. The generalized logit models

2. The conditional logit models

3. The Mixed logit models

All the models have the following set of assumptions:

• Data are case specific.

• Independence among the choices of the dependent variable.

• Errors are independently and identically distributed.

5



Note that normality, linearity, or homoscedasticity are not assumed.

In studying consumer behaviour, an individual is presented with a set of alternatives and

asked to choose the most preferred alternative. Both the generalized logit and conditional

logit models are used in the analysis of discrete choice data. In a conditional logit model, a

choice among alternatives is treated as a function of the characteristics of the alternatives,

whereas in a generalized logit model, the choice is a function of the characteristics of the

individual making the choice. In many situations, a mixed model that includes both the

characteristics of the alternatives and the individual is needed for investigating consumer

choice. We now discuss each of the models in detail. For that consider an individual

choosing among m alternatives in a choice set. The regression equation would be y∗i =

β′Xi + Ui. However y∗i is not observable. Instead we observe an indicator Yi with the

following rule:

Yi = j if αj−1 < y∗i < αj; j = 1, 2, ...,m

= 0 Otherwise

We define m dummy variables Zij for individual i with the following rule

Zij = 1 if Yi = j; j = 1, 2, ...,m

= 0 Otherwise

Assuming Ui ∼ N (0 ,1), i.e., probit, let Πjk denote the probability that individual j

chooses alternative k, let Xj represent the characteristics of individual j, and let Zjk be

the characteristics of the kth alternative for individual j.

2.1 The Generalized Logit Models

The generalized logit model consists of a combination of several binary logits estimated

simultaneously. Here the choice is a function of the characteristics of the individual making

the choice. The generalized logit model focuses on the individual as the unit of analysis and

uses individual characteristics as explanatory variables. The explanatory variables which
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are the characteristics of an individual, are constant over the alternatives.The probability

that individual j chooses alternative k is,

Πjk =
exp(β′kXj)
m∑
l=1

exp(β′lXj)

=
1

m∑
l=1

exp[(βl − βk)′Xj]

Where, β1, β2,..., βm are m vectors of unknown regression parameters (each of which is

different, even though Xj is constant across alternatives). Since
m∑
l=1

Πjk=1, the m sets of

parameters are not unique. By setting the last set of coefficients to null (that is, βm=0)

the coefficients βk represent the effects of the X variables on the probability of choosing

the kth alternative over the last alternative. In fitting such a model, one has to estimate

m− 1 sets of regression coefficients.

2.2 The Conditional Logit Models

In the conditional logit model, the explanatory variables Z assume different values for each

alternative and the impact of a unit of Z is assumed to be constant across alternatives.

The probability that the individual j chooses alternative k is

Πjk =
exp(θ′Zjk)
m∑
l=1

exp(θ′Zjl)

=
1

m∑
l=1

exp[θ′(Zjl − Zjk)]

θ is a single vector of regression coefficients. The impact of a variable on the choice

probabilities derives from the difference of its values across the alternatives.

2.3 The Mixed logit models

For the mixed logit model that includes both characteristics of the individual and the

alternatives, the choice probabilities are

Πjk =
exp(β′kXj + θ′Zjk)
m∑
l=1

exp(β′lXj + θ′Zjl)
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β1,..., βm−1 and βm ≡ 0 are the alternative-specific coefficients, and θ is the set of global

coefficients.

2.4 Writing The Mixed Logit Model as a Generalized Logit Model

Now as assumed individuals have m choices. In this model the probability of the jth choice

is specified in the following way:

P (Yi = j|Xi) =
eβ
′
jXi

m∑
j=1

eβ
′
jXi

Here Xi includes two types of information:

1. The individual socio- economic characteristics, eg. age, income, sex etc.

2. The choice characteristics. Suppose the m choices retain no different occupations.

Then Xi includes the characteristics of all the m occupations. If for the jth choice

some of the occupation characteristics are irrelevant then, we simply set the corre-

sponding co-efficient of j to zero.

Occupation choice for all m occupations Socio economic change

Xi =
[
X01i X02i X03i X04i X05i

... Xs1i Xs2i Xs3i

]
Suppose for an occupation 1 only characteristics 1,2,3 are relevant, for occupation 2, only

2,3,5 are relevant. Then

β1 =
[
β01 β02 β03 0 0

... β16 β17 β18

]
β2 =

[
0 β02 β03 0 β05

... β26 β27 β28

]
Given this specification:

P (Yi = j|Xi)

P (Yi = i|Xi)
=
eβ
′
jXi

eβ
′
iXi

= e(β
′
j−β′i)Xi

Therefore the relative probability between j and i depends:
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1. Only on the difference of βj and βi, hence we need some normalization. Take

β1 = 0⇒ eβ
′
iXi = e0 = 1⇒ P (Yi = j|Xi) = e

β′jXi

1+

m∑
j=2

eβ
′
jXi

.

2. Independence of irrelevant alternatives. Suppose we have two basic choices, m1 and

m2. The individual is indifferent between the choices, then relative probability=1.

P (1)
P (2)

= 1⇒ P (1) = P (2) = 0.5.

But say, the individual faces a choice in m1, i.e. m11 and m12. The multinominal

logit model will read these as three independent choices,m11, m12 and m2.

⇒ P (1)
P (2)

= 1, P (1)
P (3)

= 1 and P (2)
P (3)

= 1⇒ P (1) = P (2) = P (3) = 1
3
.

Since while analyzing the choice between any two choices, it ignores the characteristics

of the third choice. In reality P (1) = 0.25, P (2) = .25, P (3) = 0.5. This means that

the odds ratio between alternative 1 and 3 is 1:1 in multinomial logit structure, but it

is actually 1:2. This is an obvious inconsistency and depends on the fact that 1 and

2 are correlated choices. We need to use Nested Logit Models to solve this problem.

2.5 Estimation

Maximum Likelihood estimation is used for Multinomial logit models, where

Li =
m∏
j=1

PZ
ij ij

L =
n∏
i=1

m∏
j=1

PZ
ij ij → logL =

n∑
i=1

m∑
j=1

ZijlogPij Now we use Newton-Raphson iterative

method to estimate the parameters,

β̂j = β̂j−1 − [E(
∂2logL

∂β∂β′
)]−1
β̂j−1

The likelihood function is globally concave and therefore guarantees the global maximum.

The variance-covariance matrix is given by [E[−∂
2logL

∂β∂β′
]]−1, which can be used to do testing

and inference.

9



3 Modelling with Examples

We model discrete choice data with different examples using the SAS software. In all the

examples, subjects (individuals) are presented with choices among alternatives, and their

preferences are studied in order to investigate consumer choice.

3.1 GL Models

• EXAMPLE 1: CANDY CHOICE

This example is from SAS/STAT Software: Changes and Enhancements, Release 8.2.

There is a choice of candy in three bowls: small chocolate candy bars, lollipops, and

sugar candies. The subjects are classified by gender and age (as either “child” or

“teenager”)1. In this example Chocolate, Lollipop and Sugar are the alternative-

specific variables and Age and Gender are the characteristics of the individual. We

investigate whether age or gender affects the choice of type of candy. A generalized

logit model can be fit to relate these three factors since the choice is made on the

basis of children’s age and gender. So, k=3 in this model which can be chocolate,

lollipop and sugar. Let X1 represent the gender of individual j, X2 represent the age

of the individual j and Zjk represent the counts of the chosen candy for individual

j. Chocolate’ is the reference category for the Candy variable, so the logit being

modeled is log([ Pr(Candy=lollipop)
Pr(Candy=chocolate)

]) and log([ Pr(Candy=sugar)
Pr(Candy=chocolate)

]), one comparing choice

of lollipop versus chocolate and one comparing choice of sugar versus chocolate. In

fitting such a model, we estimate 2 sets of regression coefficients.

The parameter estimates2 and odds ratios3 for the asymptotic analysis show that the

odds of choosing a lollipop over a chocolate bar are 5(4.835 ≈ 5) times higher for

boys versus girls, and a child is 14(1/0.071 ≈ 14) times more likely than a teenager

to choose a lollipop over a chocolate bar.

1the data sets, SAS commands and output tables are presented in the Appendix
2see Table 1.4 of Appendix
3see Table 1.5 of the Appendix.
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Note in the “Analysis of Maximum Likelihood Estimates” table4, the dummy pa-

rameters for the class variables are labeled by their non-reference level, and that the

“Candy” column indicates the non-reference response category for the logit.

In the output table, the likelihood ratio chi-square of 18.9061 with a p-value< 0.0008

tells us that our model as a whole fits significantly better than an empty model (i.e.,

a model with no predictors). Several model fit measures such as the AIC are listed

below:

Model Fit Statistics

Two models are tested in this multinomial regression, they correspond to the two

equations below:

log([
Pr(Candy = lollipop)

Pr(Candy = chocolate)
]) = b10 + b11(gender = boy) + b12(age = teenager)

log([
Pr(Candy = sugar)

Pr(Candy = chocolate)
]) = b20 + b21(gender = boy) + b22(age = teenager)

Where, b’s are the regression coefficients.

1. A one-unit increase in the variable gender is associated with a 1.5758 increase

in the relative log odds of choosing lollipop vs. chocolate.

2. A one-unit increase in the variable gender is associated with a 1.5261 increase

in the relative log odds of choosing sugar vs. chocolate.

3. A one-unit increase in the variable age is associated with a 2.6472 decrease in

the relative log odds of choosing lollipop vs. chocolate.

4. A one-unit increase in the variable age is associated with a decrease in the

relative log odds of choosing sugar vs. chocolate.

5. The overall effects of gender and age are listed under “Type 3 Analysis of Effects”

and both are significant. Gender has marginal influence.

4see Table 1.4 of Appendix
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We are interested in testing whether Genderboy lollipop is equal to Genderboy sugar

and Ageteenager lollipop is equal to Ageteenager sugar, which we can now do with

the test statement. From the table “Linear hypothesis testing results”5, we observe

the effect of gender=boy for predicting lollipop vs chocolate is not different from

the effect of gender=boy for predicting sugar vs. chocolate. Similarly, the effect of

age=teenager for predicting lollipop vs. chocolate is not different from the effect

of age=teenager for predicting sugar vs chocolate. In table “Gender Least Squares

Means”6, the predicted probabilities are in the ‘Mean’ column. Thus, for gender=boy

and age=0.5, we see that the probability of choosing the chocolate is 0.2193 and

for the lollipop 0.0880. In table “Age Least Squares Means”7, for gender=0.5 and

age=child, we see that the probability of choosing chocolate is 0.1511 and for lollipop

0.7175.

• EXAMPLE 2: TRAVEL CHOICE

People are asked to choose between travel by auto, plane or public transit. The vari-

ables AUTOTIME, PLANTIME, and TRANTIME represent the total travel time

required to get to a destination by using auto, plane, or transit, respectively. They

are alternative-specific variables. The variable AGE represents the age of the individ-

ual being surveyed, and is a characteristic of the individual. The variable CHOSEN

contains the individual’s choice of travel mode.The GL model here studies the re-

lationship between the choice of transportation and age. Using the original dataset

“Travel” we run the GL model8.

Two models are estimated in this multinomial regeression. One compares choice of

auto over transit and the other compares choice of plane over transit. We observe

that9 :

5see Table 1.6 of Appendix
6see Table 1.7 of Appendix
7see Table 1.8 of Appendix
8see Appendix for SAS commands
9see Table 2.2 of Appendix
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1. A one-unit increase in the age of the subject is associated with a 0.0710 decrease

in the relative log odds of choosing auto over transit

2. A one-unit increase in the age of the subject is associated with a 0.05 decrease

in the relative log odds of choosing plane over transit.

We might interpret this is as a decrease in the preference for both auto and plane

over public transit as the individuals age increases. This could possibly be due to

the inconvenience of driving and the high cost of air travel. There are two intercept

coefficients and two slope coefficients for Age. The first Intercept and the first Age

coefficients correspond to the effect on the probability of choosing auto over tran-

sit, and the second intercept and second age coefficients correspond to the effect of

choosing plane over transit. Using our estimates, we can predict the mode of travel

choice for a hypothetical set of individuals over a range of ages from 20 to 70.

Table 1: Travel Choice- GL predictions

Age exp(β′Xj) Prob(Auto) exp(β′Xj) Prob(Plane)

20 5.0779 0.5156 5.5912 0.41408544

30 2.496 0.253 3.3912 0.251155515

40 1.2274 0.1246 2.0569 0.15233352

50 0.6034 0.0612 1.2475 0.0923

60 0.2966 0.0301 0.7566 0.056

70 0.1458 0.0148 0.4589 0.0339

Total= 9.847 1 13.5026 1

As we estimated, the predictions show that the probability of choosing auto over public

transit decreases with age, and so does that of choosing plane over transit.
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3.2 CL Models

• EXAMPLE 1: CANDY CHOICE

In this model, individuals choose their preferred alternative from a set of alternatives.

In SAS the regression can be performed using the PHREG command. This command

performs regression analysis of survival data, wherein subjects of the study are stud-

ied till they survive; following which no information is available on their status. We

consider an example from SAS, 1995, Logistic Regression Examples Using the SAS

System, pp. (2-3). Chocolate candy data are available in which 10 subjects are

presented with eight different chocolate candies. The subjects choose one preferred

candy from among the eight types. The eight candies consist of eight combinations

of:

1. dark(1) or milk(0) chocolate;

2. soft(1) or hard(0) center; and

3. nuts(1) or no nuts(0).

The dataset is first rearranged as follows:

1. The most preferred choice is said to occur at time 1 and all other choices are

said to occur at later times or to be censored. In case it is not censored, i.e. the

observation was chosen, the survival time is also called event time. The name

of the failure time variable is t.

2. A status variable is created to denote whether the observation was censored (not

chosen) or not censored (chosen). The censoring indicator variable has the value

of 0 if the alternative was censored (not chosen) and 1 if not censored (chosen).

Here the status variable is choose

3. A variable is created to specify the basis of censoring. The name of the variable

here is subject and it refers to the individuals numbering 1,2,...,10.

4. X1 and X2 are explanatory variables.
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The estimation is done via the PROC PHREG command. This command performs

regression analysis of survival data, wherein subjects of the study are studied till

they survive; following which no information is available on their status.

The estimation result for probabilities is:

pj =
exp(1.386294DARKj−2..197225SOFTj+0.8472298NUTSj)∑8
j=1 exp(1.386294DARKj−2..197225SOFTj+0.8472298NUTSj)

The positive parameter estimates of DARK and NUTS mean that dark and nuts

each increases the preference. The negative parameter estimate of SOFT denotes

soft center.

On the basis of the estimated coefficients, we can predict the probability of a partic-

ular candy being selected on the basis of the characteristics of the candy.

Table 2: Candy Choice- CL estimates

j Dark Soft Nuts exp(β′Xj) pj

1 0 0 0 1 0.054003

2 0 0 1 2.333334 0.126006

3 0 1 0 0.111056 0.005997

4 0 1 1 0.25913 0.013994

5 1 0 0 3.999999 0.216011

6 1 0 1 9.3333310 0.504025

7 1 1 0 0.444223 0.023989

8 1 1 1 1.036521 0.055975

Total =18.51759 1

Most preferred type of candy is dark chocolate with a hard center and nuts, with

probability 0.5.

To test the hypothesis that the effects of dark and soft (and, respectively, the effect

of soft and nuts) are not different from zero, we run the “test” command in SAS
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and observe that10 the first hypothesis can be rejected on the basis of the critical

value of the chi-square, but there is no evidence to reject the second. In face of

such results, care must be taken in prediction, as we could very well end up with

inaccurate predictions.

• EXAMPLE 2: Travel Choice

We consider another example of conditional regression model, where we study how

travel time affects the individual’s choice of transportation. AutoTime, PlanTime,

and TranTime are alternative-specific variables, whereas Age is a characteristic of

the individual. Using the same dataset as we did in Example 2 of the GL model,

we need to rearrange the dataset11 in order to assign a survival/failure time for each

alternative.

1. The failure time is represented by choice and takes the value of 1 if it is most

preferred and 2 otherwise. Choice therefore acts as time variable as well as the

status variable.

2. Subject refers to the individuals numbering 1,2,...,9.

3. TravTime represents the alternative specific explanatory variables Z1 and Z2.

We rearrange the dataset TRAVEL into a new data set CHOICE, where we assign a

survival time for each alternative. Time=1 is assigned if that alternative was chosen

and 2 if it was not chosen. We run the model using the PHREG procedure again.

The estimation result for probabilities is12:

pj =
exp(−0.26549Zj)∑
j exp(−0.26549Zj)

The negative coefficient for TravTime indicates that higher travel time would reduce

a subject’s preference for that alternative.

10see Table 3.3 of Appendix
11See Table 2 of Appendix
12See Table 3.3 of Appendix
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On the basis of the estimated coefficients, we can predict the probability of a par-

ticular mode of travel being selected, given their travel times. Here, the travel times

are not constant across the choices faced by individuals. If a choice of (Travel times=

4.5, 10.5 and 3.2) is given to all the subjects, our predicted probabilities would be:

Table 3: Travel Choice- CL predictions

j exp(β′Xj) pj

Auto 4.5 0.302793 0.382335

Plane 10.5 0.061566 0.077739

Transit 3.2 0.4276 0.539926

Total =0.791959 1

Hence public transit has the highest probability of being chosen.

3.3 ML Models

To study how the choice depends on both the travel time and age of the individual, we use

a mixed model that incorporates both types of variables.

We again need to reshape the dataset TRAVEL into a new dataset CHOICE13, cre-

ating new variables AgeAuto and AgePlane, each of which represent the products of the

individual’s age and his failure time for each choice. We then use the PHREG procedure

for this modified dataset with the same specifications as before.

The negative coefficient for plane with transit14 as the reference category might point

towards the inconvenience of travelling by plane, perhaps due to the high cost. Travel

by automobile would be preferred to public transit. The negative coefficient for AgeAuto

implies that, despite the general preference exhibited for auto, it becomes an undesirable

option as the subject grows older. Whereas it appears that plane travel would be preferred

13see Table 2 of Appendix
14see Table 5.3 of Appendix
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by older people. As in the conditional logit model, travel time has a negative effect on

preference.

4 Conclusion

In this paper we have attempted to give an overview of the theoretical and practical aspects

of the Multinomial Logit Model. We demonstrate the applications of the three types of

such models through examples and showed how the estimates obtained from the regressions

can be used to predict the choices or responses of individuals. This model has widespread

applications in the study of consumer preferences, levels of academic achievements, gender

based differences in outcomes, medical research and various areas of behavioural economics.

The assumptions underlying the Multinomial Logit Model often do not hold in practice.

Independence of irrelevant alternatives in particular may be violated as we have discussed

earlier. Nested logits are better fitted to describe such choices. Furthermore, the subjects

of the study might be influenced by their past choices or may have some specific opinions

about certain attributes or levels. This can be resolved by using Multinomial probit Models,

which does not have such restrictive assumptions.
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APPENDIX 

 
A. SAS Commands 

 
1. Generalised Logit Model 

1.1 Candy Choice  
 

data GLExample1; 

format Candy $9.; 

input Gender $ Age $ Candy $ count @@; 

datalines; 

boy child chocolate 2 boy teenager chocolate 1 

boy child lollipop 13 boy teenager lollipop 9 

boy child sugar 3 boy teenager sugar 3 

girl child chocolate 3 girl teenager chocolate 8 

girl child lollipop 9 girl teenager  lollipop 0 

girl child sugar 1 girl teenager sugar 1 

 ; 

 

proc logistic data=GLExample1 outest = mlogit_param; 

freq count; 

class Gender(ref='girl') Age(ref='child') / param=ref; 

model Candy(ref='chocolate') = Gender Age / link=glogit; 

run; 

 

 

proc logistic data=GLExample1 outest = mlogit_param; 

freq count; 

class Gender(ref='girl') Age(ref='child') / param=ref; 

model Candy(ref='chocolate') = Gender Age / link=glogit; 

     Test_1: test Genderboy_lollipop = Genderboy_sugar; 

     Test_2: test Ageteenager_lollipop = Ageteenager_sugar; 

    run; 

 

 

 proc logistic data = GLExample1 outest = mlogit_param; 

freq count; 

    class Candy Gender Age / param = glm; 

    model Candy =  Gender Age / link = glogit; 

    lsmeans Gender / e ilink cl; 

    run; 

 

 

    proc logistic data = GLExample1 outest = mlogit_param; 



  
 

II 

 

    freq count; 

    class Candy Gender Age / param = glm; 

    model Candy =  Gender Age / link = glogit; 

    lsmeans Age / e ilink cl; 

    run; 

 
 

1.2 Travel Choice 

 
data travel; 

      input AutoTime PlanTime TranTime Age Chosen $; 

      datalines; 

10.0 4.5 10.5 32 Plane 

5.5 4.0 7.5 13 Auto 

4.5 6.0 5.5 41 Transit 

3.5 2.0 5.0 41 Transit 

1.5 4.5 4.0 47 Auto 

10.5 3.0 10.5 24 Plane 

7.0 3.0 9.0 27 Auto 

9.0 3.5 9.0 21 Plane 

4.0 5.0 5.5 23 Auto 

22.0 4.5 22.5 30 Plane 

7.5 5.5 10.0 58 Plane 

11.5 3.5 11.5 36 Transit 

3.5 4.5 4.5 43 Auto 

12.0 3.0 11.0 33 Plane 

18.0 5.5 20.0 30 Plane 

23.0 5.5 21.5 28 Plane 

4.0 3.0 4.5 44 Plane 

5.0 2.5 7.0 37 Transit 

3.5 2.0 7.0 45 Auto 

12.5 3.5 15.5 35 Plane 

1.5 4.0 2.0 22 Auto 

; 
 
     proc catmod data=travel; 

        direct age; 

        model chosen=age; 

        title 'Multinomial Logit Model Using Catmod'; 

     run; 

 

 

2. Conditional Logit Model 

2.1 Candy Choice 
 

    data CLExample1; 



  
 

III 

 

       input subject choose dark soft nuts @@; 

       t=2-choose; 

       cards; 

     1 0 0 0 0   1 0 0 0 1   1 0 0 1 0   1 0 0 1 1 

     1 1 1 0 0   1 0 1 0 1   1 0 1 1 0   1 0 1 1 1 

     2 0 0 0 0   2 0 0 0 1   2 0 0 1 0   2 0 0 1 1 

     2 0 1 0 0   2 1 1 0 1   2 0 1 1 0   2 0 1 1 1 

     3 0 0 0 0   3 0 0 0 1   3 0 0 1 0   3 0 0 1 1 

        3 0 1 0 0   3 0 1 0 1   3 1 1 1 0   3 0 1 1 1 

     4 0 0 0 0   4 0 0 0 1   4 0 0 1 0   4 0 0 1 1 

     4 1 1 0 0   4 0 1 0 1   4 0 1 1 0   4 0 1 1 1 

     5 0 0 0 0   5 1 0 0 1   5 0 0 1 0   5 0 0 1 1 

             5 0 1 0 0   5 0 1 0 1   5 0 1 1 0   5 0 1 1 1 

     6 0 0 0 0   6 0 0 0 1   6 0 0 1 0   6 0 0 1 1 

     6 0 1 0 0   6 1 1 0 1   6 0 1 1 0   6 0 1 1 1 

     7 0 0 0 0   7 1 0 0 1   7 0 0 1 0   7 0 0 1 1 

     7 0 1 0 0   7 0 1 0 1   7 0 1 1 0   7 0 1 1 1 

     8 0 0 0 0   8 0 0 0 1   8 0 0 1 0   8 0 0 1 1 

     8 0 1 0 0   8 1 1 0 1   8 0 1 1 0   8 0 1 1 1 

     9 0 0 0 0   9 0 0 0 1   9 0 0 1 0   9 0 0 1 1 

     9 0 1 0 0   9 1 1 0 1   9 0 1 1 0   9 0 1 1 1 

   10 0 0 0 0  10 0 0 0 1  10 0 0 1 0  10 0 0 1 1 

   10 0 1 0 0  10 1 1 0 1  10 0 1 1 0  10 0 1 1 1 

     ; 
 

 

   proc phreg data=CLExample1; 

   strata subject; 

   model t*choose(0)=dark soft nuts; 

   run; 

 

   proc phreg data=CLExample1; 

   strata subject; 

    model t*choose(0)=dark soft nuts; 

   test1: test dark=soft=0; 

   test2: test soft=nuts=0; 

   run; 

 

2.2 Travel Choice 

 
    proc phreg data=choice; 

        model choice*choice(2) = travtime / ties=breslow; 

        strata subject; 

            run; 

 

3. Mixed Logit Model 



  
 

IV 

 

 

    proc phreg data=choice2; 

        model choice*choice(2) = auto plane ageauto ageplane travtime 

        /ties=breslow; 

        strata subject; 

    run; 

 

B. Data Tables 

 

Table 1. GL Model: Subject Preferences     Candy 

Gender Age Chocolate Lollipop Sugar 

Boy child 2 13 3 

Boy teenager 10 9 3 

Girl child 3 9 1 

Girl teenager 8 0 1 

 
Table 2. CL & ML: Dataset “Choice” 

Subject Mode TravTime Choice Auto Plane AgeAuto AgePlane 

1 Auto 10 2 1 0 32 0 

1 Plane 4.5 1 0 1 0 32 

1 Transit 10.5 2 0 0 0 0 

2 Auto 5.5 1 1 0 13 0 

2 Plane 4 2 0 1 0 13 

2 Transit 7.5 2 0 0 0 0 

3 Auto 4.5 2 1 0 41 0 

3 Plane 6 2 0 1 0 41 

3 Transit 5.5 1 0 0 0 0 

4 Auto 3.5 2 1 0 41 0 

4 Plane 2 2 0 1 0 41 

4 Transit 5 1 0 0 0 0 

5 Auto 1.5 1 1 0 47 0 

5 Plane 4.5 2 0 1 0 47 

5 Transit 4 2 0 0 0 0 

6 Auto 10.5 2 1 0 24 0 

6 Plane 3 1 0 1 0 24 

6 Transit 10.5 2 0 0 0 0 

7 Auto 7 1 1 0 27 0 

7 Plane 3 2 0 1 0 27 

7 Transit 9 2 0 0 0 0 



  
 

V 

 

8 Auto 9 2 1 0 21 0 

8 Plane 3.5 1 0 1 0 21 

8 Transit 9 2 0 0 0 0 

9 Auto 4 1 1 0 23 0 

9 Plane 5 2 0 1 0 23 

9 Transit 5.5 2 0 0 0 0 

10 Auto 22 2 1 0 30 0 

10 Plane 4.5 1 0 1 0 30 

10 Transit 22.5 2 0 0 0 0 

11 Auto 7.5 2 1 0 58 0 

11 Plane 5.5 1 0 1 0 58 

11 Transit 10 2 0 0 0 0 

12 Auto 11.5 2 1 0 36 0 

12 Plane 3.5 2 0 1 0 36 

12 Transit 11.5 1 0 0 0 0 

13 Auto 3.5 1 1 0 43 0 

13 Plane 4.5 2 0 1 0 43 

13 Transit 4.5 2 0 0 0 0 

14 Auto 12 2 1 0 33 0 

14 Plane 3 1 0 1 0 33 

14 Transit 11 2 0 0 0 0 

15 Auto 18 2 1 0 30 0 

15 Plane 5.5 1 0 1 0 30 

15 Transit 20 2 0 0 0 0 

16 Auto 23 2 1 0 28 0 

16 Plane 5.5 1 0 1 0 28 

16 Transit 21.5 2 0 0 0 0 

17 Auto 4 2 1 0 44 0 

17 Plane 3 1 0 1 0 44 

17 Transit 4.5 2 0 0 0 0 

18 Auto 5 2 1 0 37 0 

18 Plane 2.5 2 0 1 0 37 

18 Transit 7 1 0 0 0 0 

19 Auto 3.5 1 1 0 45 0 

19 Plane 2 2 0 1 0 45 

19 Transit 7 2 0 0 0 0 

20 Auto 12.5 2 1 0 35 0 

20 Plane 3.5 1 0 1 0 35 

20 Transit 15.5 2 0 0 0 0 

21 Auto 1.5 1 1 0 22 0 

21 Plane 4 2 0 1 0 22 

21 Transit 2 2 0 0 0 0 
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C. Output Tables 

 
1. Generalised Logit Model: Candy Choice 

 

Table 1.1: Model Fit Statistics 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

Criterion 

Intercept 

Only 

Intercept 

and  

Covariates 

AIC 125.354 114.448 

SC 129.608 127.210 

-2 Log L 121.354 102.448 
 

 

Table 1.2:Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 18.9061 4 0.0008 

Score 16.9631 4 0.0020 

Wald 12.8115 4 0.0122 

 

Table 1.3: Type III Analysis of Effects 

Effect DF 

Wald 

Chi-Square Pr > ChiSq 

Gender 2 4.7168 0.0946 

Age 2 12.2325 0.0022 
 

 

 

Table 1.4: Analysis of Maximum Likelihood Estimates 
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Parameter   Candy DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept   lollipop 1 0.7698 0.5782 1.7722 0.1831 

Intercept   sugar 1 -0.9033 0.8664 1.0869 0.2972 

Gender boy lollipop 1 1.5758 0.7569 4.3347 0.0373 

Gender boy sugar 1 1.5261 1.0158 2.2570 0.1330 

Age teenager lollipop 1 -2.6472 0.7572 12.2212 0.0005 

Age teenager sugar 1 -1.7416 0.9623 3.2754 0.0703 

  

Table 1.5:Odds Ratio Estimates 

Effect Candy Point Estimate 

95% Wald 

Confidence Limits 

Gender boy vs girl lollipop 4.835 1.097 21.313 

Gender boy vs girl sugar 4.600 0.628 33.686 

Age teenager vs child lollipop 0.071 0.016 0.313 

Age teenager vs child sugar 0.175 0.027 1.155 
 

 

 

 

  

 

 

Table 1.6 :Linear Hypothesis Testing Results 

  Label Wald 

Chi-Square 

DF Pr > ChiSq 

  Test_1 0.0027 1 0.9582 

 Test_2 1.1585 1 0.2818 
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Table 1.7: Gender Least Squares Means(Prediction) 

Candy Gender Estimate Standard 

Error 

z Value Pr > |z| Mean Standard 

Error 

of Mean 

Lower 

Mean 

Upper 

Mean 

chocolate boy 0.2480 0.5702 0.43 0.6636 0.2193 0.07682 0.06878 0.3699 

chocolate girl 1.7741 0.8127 2.18 0.0290 0.5733 0.1263 0.3257 0.8208 

lollipop boy 1.2701 0.4687 2.71 0.0067 0.6095 0.08804 0.4370 0.7821 

lollipop girl 1.2203 0.8206 1.49 0.1370 0.3295 0.1159 0.1022 0.5567 

 

 

 

 

2. Generalized Logit Model: Travel Choice 

  

Table 2.1: Maximum Likelihood Analysis of Variance 

Source DF  Chi-Square Pr > ChiSq 

Intercept 2 1.72 0.4238 

Age 2 1.20 0.5478 

Likelihood Ratio 34 42.18 0.1583 

 

Table 1.8: Age Least Squares Means(Prediction) 

Candy Age Estimate Standard 

Error 

z Value Pr > |z| Mean Standard 

Error 

of Mean 

Lower 

Mean 

Upper 

Mean 

chocolate child 0.1403 0.7067 0.20 0.8427 0.1511 0.06721 0.01939 0.2829 

chocolate teenager 1.8819 0.6583 2.86 0.0043 0.6717 0.09718 0.4813 0.8622 

lollipop child 1.6980 0.5579 3.04 0.0023 0.7175 0.08384 0.5532 0.8818 

lollipop teenager 0.7924 0.6965 1.14 0.2552 0.2260 0.08207 0.06510 0.3868 
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Table 2.2: Analysis of Maximum Likelihood Estimates 

Parameter Function 

Number 

Estimate  Standard 

Error 

Chi- 

Square 

Pr > ChiSq 

Intercept 1 3.0449 2.4268 1.57 0.2096 

  2 2.7212 2.2929 1.41 0.2353 

Age 1 -0.0710 0.0652 1.19 0.2762 

  2 -0.0500 0.0596 0.70 0.4013 
 

      Table 2.3: Predictions 

Age exp(β’Xj) Prob(Auto) exp(β’Xj) Prob(Plane) 

20 5.077911 0.515638 5.591234 0.414085 

30 2.496526 0.25351 3.391255 0.251156 

40 1.227402 0.124637 2.0569 0.152334 

50 0.603445 0.061277 1.247573 0.092395 

60 0.29668 0.030126 0.756691 0.05604 

70 0.145861 0.014812 0.458956 0.03399 

Total 9.847826 1 13.50261 1 

 

3. Conditional Logit Model: Candy Choice  
 

 

Table 3.1: Model Fit statistics 

Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

Criterion Without 

Covariates 

With 

Covariates 

-2 LOG L 41.589 28.727 

AIC 41.589 34.727 

SBC 41.589 35.635 
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Table 3.2: Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 12.8618 3 0.0049 

Score 11.6000 3 0.0089 

Wald 8.9275 3 0.0303 

 

 

 

Table 3.3: Analysis of Maximum Likelihood Estimates 

 

Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-

Square 

Pr > ChiSq Hazard 

Ratio 

dark 1 1.38629 0.79057 3.0749 0.0795 4.000 

soft 1 -2.19722 1.05409 4.3450 0.0371 0.111 

nuts 1 0.84730 0.69007 1.5076 0.219 2.333 

Table 3.4: Linear Hypothesis Testing Results 

  Label Wald 

Chi-

Square 

DF Pr > ChiSq 

  test1 7.4199 2 0.0245 

  test2 5.8526 2 0.0536 

 

 

Table 3.5: Predictions 

   j  Dark  Soft  Nuts  exp(β’Xj)     Pj  

  1  0  0  0  1  0.054003  

  2  0  0  1  2.333334  0.126006  

  3  0  1  0  0.111056  0.005997  
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  4  0  1  1  0.25913  0.013994  

  5  1  0  0  3.999999  0.216011  

  6  1  0  1  9.333331  0.504025  

  7  1  1  0  0.444223  0.023989  

  8  1  1  1  1.036521  0.055975  

   

∑exp(β’Xj)  =18.51759  1  

 

 
 

4. Conditional Logit Model: Travel Choice   

 
 Table 4.1: Model Fit Statistics 

Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

Criterion Without 

Covariates 

With 

Covariates 

-2 LOG L 46.142 33.629 

AIC 46.142 35.629 

SBC 46.142 36.673 

 

 

Table 4.2: Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 12.5130 1 0.0004 

Score 11.9883 1 0.0005 

Wald 6.7551 1 0.0093 
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Table 4.3: Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-Square Pr > ChiSq Hazard 

Ratio 

Label 

 

TravTime 

 

1 

 

-0.26549 

 

0.10215 

 

6.7551 

 

0.0093 

 

0.767 

 

TravTime 

 
 

Table 4.4: Predictions 

j  

 

exp(β’xj)  pj  

Auto  4.5  0.302793  0.382335  

Plane  10.5  0.061566  0.077739  

Transit  3.2  0.4276  0.539926  

  

∑exp(β’xj)  

=0.791959  

1  

 

 

5.Mixed Logit Model: Travel Choice 

 
Table 5.1: Model Fit Statistics 

Criterion Without 

Covariates 

With 

Covariates 

-2 LOG L 46.142 27.464 

AIC 46.142 37.464 

SBC 46.142 42.687 

 

 

 

Table 5.2: Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 18.6774 5 0.0022 

Score 15.3613 5 0.0089 

Wald 6.8051 5 0.2355 
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Table 5.3: Analysis of Maximum Likelihood Estimates 

Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-Square Pr > ChiSq Hazard 

Ratio 

Label 

Auto 1 2.50069 2.39585 1.0894 0.2966 12.191 Auto 

Plane 1 -2.77912 3.52929 0.6201 0.4310 0.062 Plane 

AgeAuto 1 -0.07826 0.06332 1.5274 0.2165 0.925 AgeAuto 

AgePlane 1 0.01695 0.07439 0.0519 0.8198 1.017 AgePlane 

TravTime 1 -0.60845 0.27126 5.0315 0.0249 0.544 TravTime 
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