Probit and Logit Models

Abhilasha, Prerna, Sharada, Shreya

April 19, 2013

Motivation

- ▶ In the linear regression model, the dependent variable is quantitative. We discuss a model wherein the regressand is qualitative in nature.
- ▶ In a model where Y is quantitative the objective is to estimate its expected value given the value of the regressors whereas when Y is qualitative the objective is to find the probability of occurrence of an event. For ex: A student getting admission in IGIDR
- Qualitative response regression models are also known as Probability Models.

Introduction

- We study the impact of variables such as GRE, GPA and prestige of an undergraduate institute on admission into graduate school.
- ► Thus the response variable 'Admit' is a binary variable taking two values, 1 for admission and 0 otherwise.
- ► There are 3 ways to develop a probability model for a binary response variable:
 - 1. Linear Probability Model
 - 2. The Logit Model
 - 3. The Probit Model
- We will elucidate on the Logit and Probit models.

Probit and Logit Model

- \triangleright $E(Y_i|X_i)$ is the probability that the event will occur.
- We model this probability of occurrence as the linear combination of characteristics of the individual i.e.

$$p_i = F(\beta' X_i)$$

▶ The probability distribution of U_i in case of a linear probability model is

$$\begin{array}{c|cc}
U_i & P_{U_i} \\
\hline
1 - \beta' X_i & \beta' X_i \\
-\beta' X_i & 1 - \beta' X_i
\end{array}$$

Note that the distribution of U_i is not normal, it depends on the unknown parameter β and exhibits heteroskedasticity leading to the problem of interpretation.

Probit and Logit Functions

We want a functional form such that:

$$-\infty \le \beta' X_i \le +\infty$$
$$0 \le F(\beta' X_i) \le 1$$

- Probability distribution functions satisfy the above two conditions.
- Mentioned below are the distribution functions of the Probit and Logit models

$$F(\beta'X_i) = \int_{-\infty}^{\beta'X_i} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}U^2} dU \equiv \Phi(\beta'X_i) \Rightarrow \text{Probit}$$
 $F(\beta'X_i) = \frac{e^{\beta'X_i}}{1 + e^{\beta'X_i}} \Rightarrow \text{Logit}$

Latent Variable

- ▶ Consider a response function $Y_i^* = \beta' X_i + U_i$
- ► Latent Variable cannot be observed directly but is inferred from an observable variable.
- With reference to our example the latent variable is the utility derived from getting admission into IGIDR.

$$Y_i = \begin{cases} 1 & \text{if } Y_i^* \ge 0 \\ 0 & \text{if } Y_i^* < 0 \end{cases}$$

Odds Ratio

- ▶ In the Logit model p_i is non linear in X and β .
- \triangleright p_i is the probability of getting admission (success).
- ▶ In of Odds Ratio (logit) is linear in X and β .

$$p_i = \frac{e^{\beta' X_i}}{1 + e^{\beta' X_i}}$$

Odds Ratio
$$= \frac{p_i}{1 - p_i} = e^{\beta' X_i}$$

βk gives the change in the logit of Y (admit) for a unit change in GRE, GPA or Prestige of Institution, X_{ik} which is independent of the value of the regressor.

Marginal Effects

$$\begin{array}{l} \text{Logit Model} = \frac{\partial p_i}{\partial X_{ik}} = \left[\frac{e^{\beta' X_i}}{(1+e^{\beta' X_i})^2}\right] (\hat{\beta}_k) \\ \\ \text{Probit Model} = \frac{\partial p_i}{\partial X_{ik}} = \phi(\hat{\beta}' X_i) (\hat{\beta}_k) \end{array}$$

- Slope coefficients have a different meaning as compared to CLRM and LPM.
- ▶ The rate of change in probability with respect to X in:
 - 1. Logit: involves not only β but also the level of p_i from which the change is measured.
 - 2. Probit: depends on the level of X

Estimation

Inconsistency of OLS for Probit and Logit Models

$$p_i = F(\beta' X_i)$$

$$Y_i = E(Y_i|X_i) + \eta_i$$
 with $E(\eta_i|X_i) = 0$

Rewrite this as,

$$Y_i = \beta' X_i + [E(Y_i|X_i) - \beta' X_i] + \eta_i$$

And let,

$$[E(Y_i|X_i) - \beta'X_i] + \eta_i = \omega_i$$

٠.

$$Y_i = \beta' X_i + \omega_i$$
$$E(\omega_i | X_i) = F(\beta' X_i) - \beta' X_i$$

٠.

$$E(\omega_i|X_i)=0$$
 only if $F(\beta'X_i)=\beta'X_i$

Estimation

Estimation of Logit with WLS

$$L_i = \ln\left[\frac{p_i}{1 - p_i}\right] = \beta' X_i + \eta_i$$

- For Individual Data OLS is infeasible as the Likelihood Function is not defined
- ► For Grouped Data WLS is applicable because although the error is heteroscedastic it is still normally distributed.

$$\eta_i \sim \mathcal{N}\left[0, rac{1}{ extstyle N_i p_i (1-p_i)}
ight]$$

Estimation

- 1. Estimate for each X_i the probability of getting admission as $\hat{p_i} = \frac{n_i}{N_i}$.
- 2. Obtain the logit as $\hat{L}_i = \ln \left[\frac{p_i}{(1-p_i)} \right]$.
- 3. Transform the model to overcome heteroscedasticity as follows,

$$\sqrt{w_i}L_i = \beta_1\sqrt{w_i} + \beta_2\sqrt{w_i}X_i + \sqrt{w_i}\eta_i$$

4. Estimate this model with OLS (regression through origin).

Non Linear Least Squares

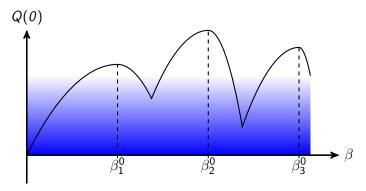
- Under the normality assumption of the disturbance term, OLS estimators are BLUE as well as BUE.
- Dropping the normality assumption on the noise term, it is possible to obtain nonlinear estimators that perform better than OLS estimators.
- Nonlinear least squares estimation involves solving nonlinear normal equations.
- Analytical solution not possible iterative numerical search procedure needed.

Minimise Q =
$$\sum \hat{\eta}_i^2 = \sum [Y_i - F(\beta'X_i)]^2$$

NLLS Contd...

Use Newton-Raphson Method to iterate and obtain:

$$\hat{\beta}_{j+1} = \hat{\beta}_j - \left[\frac{\partial^2 Q}{\partial \beta \partial \beta'} \right]_{\hat{\beta}_{j-1}}^{-1} \left[\frac{\partial Q}{\partial \beta} \right]_{\hat{\beta}_{j-1}}$$



Maximum Likelihood Estimation

- ► The maximum likelihood principle is applicable when the form of the probability distribution is known.
- Produces estimates that are consistent and, at least asymptotically, minimum variance.
- Likelihood Function

$$L = \prod_{i=1}^{n} p_i^{Y_i} (1 - p_i)^{1 - Y_i}$$

Likelihood Function

Probit

$$p_i = \Phi(\beta'X_i)$$

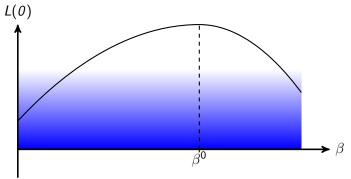
$$L = \prod_{i=1}^n \Phi(\beta'X_i)^{Y_i} (1 - \Phi(\beta'X_i))^{1-Y_i}$$

Logit

$$\begin{aligned} \rho_i &= \frac{e^{\beta'X_i}}{1 + e^{\beta'X_i}} \\ L &= \prod_{i=1}^n \left[\frac{e^{\beta'X_i}}{1 + e^{\beta'X_i}} \right]^{Y_i} \left[\frac{1}{1 + e^{\beta'X_i}} \right]^{1 - Y_i} \end{aligned}$$

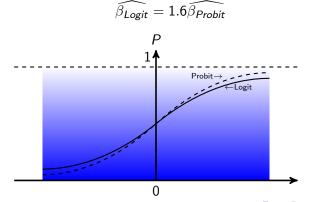
Maximum Likelihood Contd...

- ▶ As with nonlinear estimation closed form solution is difficult
- ▶ Iterative procedures (Newton Raphson) must be used (replace *Q* with log *L*).
- Convergence to global maximum is ensured as Log function is globally concave



Choice between Probit and Logit

- Logistic Distribution has flatter tails compared to Probit
- ► The Logit model performes well in heterogenous data, moderately balanced data as well as data with outliers
- Logit and Probit estimates are approximately related by the following rule:



Example

- ► The example attempts to model various factors that influence the admission of a student into a graduate school.
- ► The dependent variable; Admit/Dont Admit is binary.
- ▶ The explanatory variables are:
 - 1. GRE score treated as a continuous variable
 - 2. GPA treated as a continuous variable
 - Prestige of the undergraduate institution coded as rank, taking values from 1 to 4 where Rank 1 has the highest prestige.

SAS Logit Output

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Std Est	Wald Error	χ^2	$\Pr > \chi^2$		
Intercept	1	-5.5414	1.1381	23.7081	< 0.0001		
GRE	1	0.00226	0.00109	4.2842	0.0385		
GPA	1	0.8040	0.3318	5.8714	0.0154		
Rank 1	1	1.5514	0.4178	13.7870	0.0002		
Rank 2	1	0.8760	0.3667	5.7056	0.0165		
Rank 3	1	0.2112	0.3929	0.2891	0.5908		

Logit Interpretation

- ► For every one unit change in GRE, the log odds of admission (versus non-admission) increases by 0.002.
- ► For a one unit increase in GPA, the log odds of being admitted to graduate school increases by 0.804
- ► The coefficients for the categories of rank have a slightly different interpretation because rank is a qualitative variable.

Odds Ratio Estimates

Odds Ratio Estimates								
Effect	Point Est	95% Wald UL	95% Wald LL					
GRE	1.002	1.000	1.004					
GPA	2.235	1.166	4.282					
RANK 1 vs 4	4.718	2.080	10.701					
RANK 2 vs 4	2.401	1.170	4.927					
RANK 3 vs 4	1.235	0.572	2.668					

- Rank 4 category is the base category.
- ► Having attended an undergraduate institution with a rank of 1, versus an institution with a rank of 4, increases the odds of admission by 4.718.

SAS Probit Output

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Std Est	Wald Error	χ^2	$\Pr > \chi^2$		
Intercept	1	-3.3225	0.6633	25.0872	< 0.0001		
GRE	1	0.00138	0.000650	4.4767	0.0344		
GPA	1	0.4777	0.1972	5.8685	0.0154		
RANK 1	1	0.9359	0.2453	14.5606	0.0001		
RANK 2	1	0.5205	0.2109	6.0904	0.0136		
RANK 3	1	0.1237	0.2240	0.3053	0.5806		

Probit Interpretation

- ► The probit regression coefficients give the change in the probit index, also called the Z score, for a unit increase in the regressor.
- ▶ For a unit change in GRE, the Z score increases by 0.001.
- ► For a unit change in GPA, the Z score increases by 0.478.
- ▶ The coefficients for rank categories have a different interpretation. Here, having attended an undergraduate institution with a rank of 1, versus an institution with a rank of 4, increases the Z score by 0.936 (Rank 4 is the base category).

THANK YOU