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Motivation

I In the linear regression model, the dependent variable is
quantitative. We discuss a model wherein the regressand is
qualitative in nature.

I In a model where Y is quantitative the objective is to
estimate its expected value given the value of the regressors
whereas when Y is qualitative the objective is to find the
probability of occurrence of an event. For ex: A student
getting admission in IGIDR

I Qualitative response regression models are also known as
Probability Models.
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Introduction

I We study the impact of variables such as GRE, GPA and
prestige of an undergraduate institute on admission into
graduate school.

I Thus the response variable ’Admit’ is a binary variable taking
two values, 1 for admission and 0 otherwise.

I There are 3 ways to develop a probability model for a binary
response variable:

1. Linear Probability Model
2. The Logit Model
3. The Probit Model

I We will elucidate on the Logit and Probit models.
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Probit and Logit Model

I E (Yi |Xi ) is the probability that the event will occur.

I We model this probability of occurrence as the linear
combination of characteristics of the individual i.e.

pi = F (β′Xi )

I The probability distribution of Ui in case of a linear probability
model is

Ui PUi

1− β′Xi β′Xi

−β′Xi 1− β′Xi

I Note that the distribution of Ui is not normal, it depends on
the unknown parameter β and exhibits heteroskedasticity
leading to the problem of interpretation.
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Probit and Logit Functions

I We want a functional form such that:

−∞ ≤ β′Xi ≤ +∞

0 ≤ F (β′Xi ) ≤ 1

I Probability distribution functions satisfy the above two
conditions.

I Mentioned below are the distribution functions of the Probit
and Logit models

F (β′Xi ) =

∫ β′Xi

−∞

1√
2π

e−
1
2
U2
dU ≡ Φ(β′Xi )⇒ Probit

F (β′Xi ) =
eβ
′Xi

1 + eβ′Xi
⇒ Logit

Abhilasha, Prerna, Sharada, Shreya Probit and Logit Models



Latent Variable

I Consider a response function Y ∗i = β′Xi + Ui

I Latent Variable cannot be observed directly but is inferred
from an observable variable.

I With reference to our example the latent variable is the utility
derived from getting admission into IGIDR.

Yi =

{
1 if Y ∗i ≥ 0

0 if Y ∗i < 0
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Odds Ratio

I In the Logit model pi is non linear in X and β.

I pi is the probability of getting admission (success).

I ln of Odds Ratio (logit) is linear in X and β.

pi =
eβ
′Xi

1 + eβ′Xi

Odds Ratio =
pi

1− pi
= eβ

′Xi

I βk gives the change in the logit of Y (admit) for a unit
change in GRE, GPA or Prestige of Institution, Xik which is
independent of the value of the regressor.
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Marginal Effects

Logit Model =
∂pi
∂Xik

=

[
eβ
′Xi

(1 + eβ′Xi )
2

]
(β̂k)

Probit Model =
∂pi
∂Xik

= φ(β̂′Xi )(β̂k)

I Slope coefficients have a different meaning as compared to
CLRM and LPM.

I The rate of change in probability with respect to X in:

1. Logit: involves not only β but also the level of pi from which
the change is measured.

2. Probit: depends on the level of X
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Estimation

Inconsistency of OLS for Probit and Logit Models

pi = F (β′Xi )

Yi = E (Yi |Xi ) + ηi with E (ηi |Xi ) = 0

Rewrite this as,

Yi = β′Xi + [E (Yi |Xi )− β′Xi ] + ηi

And let,
[E (Yi |Xi )− β′Xi ] + ηi = ωi

∴
Yi = β′Xi + ωi

E (ωi |Xi ) = F (β′Xi )− β′Xi

∴
E (ωi |Xi ) = 0 only if F (β′Xi ) = β′Xi
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Estimation

Estimation of Logit with WLS

Li = ln

[
pi

1− pi

]
= β′Xi + ηi

I For Individual Data OLS is infeasible as the Likelihood
Function is not defined

I For Grouped Data WLS is applicable because although the
error is heteroscedastic it is still normally distributed.

ηi ∼ N
[

0,
1

Nipi (1− pi )

]
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Estimation

1. Estimate for each Xi the probability of getting admission as

p̂i =
ni
Ni

.

2. Obtain the logit as L̂i = ln

[
pi

(1− pi )

]
.

3. Transform the model to overcome heteroscedasticity as
follows, √

wiLi = β1
√
wi + β2

√
wiXi +

√
wiηi

4. Estimate this model with OLS (regression through origin).
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Non Linear Least Squares

I Under the normality assumption of the disturbance term, OLS
estimators are BLUE as well as BUE.

I Dropping the normality assumption on the noise term, it is
possible to obtain nonlinear estimators that perform better
than OLS estimators.

I Nonlinear least squares estimation involves solving nonlinear
normal equations.

I Analytical solution not possible - iterative numerical search
procedure needed.

Minimise Q =
∑

η̂2i =
∑

[Yi − F (β′Xi )]2
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NLLS Contd...

I Use Newton-Raphson Method to iterate and obtain:

β̂j+1 = β̂j −
[
∂2Q

∂β∂β′

]−1
β̂j−1

[
∂Q

∂β

]
β̂j−1

β

Q(0)

β01 β02 β03
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Maximum Likelihood Estimation

I The maximum likelihood principle is applicable when the
form of the probability distribution is known.

I Produces estimates that are consistent and, at least
asymptotically, minimum variance.

I Likelihood Function

L =
n∏

i=1

pYi
i (1− pi )

1−Yi
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Likelihood Function

I Probit
pi = Φ(β′Xi )

L =
n∏

i=1

Φ(β′Xi )
Yi (1− Φ(β′Xi ))1−Yi

I Logit

pi =
eβ
′Xi

1 + eβ′Xi

L =
n∏

i=1

[
eβ
′Xi

1 + eβ′Xi

]Yi[
1

1 + eβ′Xi

]1−Yi
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Maximum Likelihood Contd...

I As with nonlinear estimation closed form solution is difficult

I Iterative procedures (Newton Raphson) must be used (replace
Q with log L).

I Convergence to global maximum is ensured as Log function is
globally concave

β

L(0)

β0
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Choice between Probit and Logit

I Logistic Distribution has flatter tails compared to Probit
I The Logit model performes well in heterogenous data,

moderately balanced data as well as data with outliers
I Logit and Probit estimates are approximately related by the

following rule:

β̂Logit = 1.6β̂Probit

P

0

1
Probit→

←Logit
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Example

I The example attempts to model various factors that influence
the admission of a student into a graduate school.

I The dependent variable; Admit/Dont Admit is binary.
I The explanatory variables are:

1. GRE score - treated as a continuous variable
2. GPA - treated as a continuous variable
3. Prestige of the undergraduate institution - coded as rank,

taking values from 1 to 4 where Rank 1 has the highest
prestige.
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SAS Logit Output

Analysis of Maximum Likelihood Estimates

Parameter DF Std Est Wald Error χ2 Pr > χ2

Intercept 1 −5.5414 1.1381 23.7081 < 0.0001
GRE 1 0.00226 0.00109 4.2842 0.0385
GPA 1 0.8040 0.3318 5.8714 0.0154

Rank 1 1 1.5514 0.4178 13.7870 0.0002
Rank 2 1 0.8760 0.3667 5.7056 0.0165
Rank 3 1 0.2112 0.3929 0.2891 0.5908
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Logit Interpretation

I For every one unit change in GRE, the log odds of admission
(versus non-admission) increases by 0.002.

I For a one unit increase in GPA, the log odds of being
admitted to graduate school increases by 0.804

I The coefficients for the categories of rank have a slightly
different interpretation because rank is a qualitative variable.
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Odds Ratio Estimates

Odds Ratio Estimates

Effect Point Est 95% Wald UL 95% Wald LL

GRE 1.002 1.000 1.004
GPA 2.235 1.166 4.282

RANK 1 vs 4 4.718 2.080 10.701
RANK 2 vs 4 2.401 1.170 4.927
RANK 3 vs 4 1.235 0.572 2.668

I Rank 4 category is the base category.

I Having attended an undergraduate institution with a rank of
1, versus an institution with a rank of 4, increases the odds of
admission by 4.718.
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SAS Probit Output

Analysis of Maximum Likelihood Estimates

Parameter DF Std Est Wald Error χ2 Pr > χ2

Intercept 1 −3.3225 0.6633 25.0872 < 0.0001
GRE 1 0.00138 0.000650 4.4767 0.0344
GPA 1 0.4777 0.1972 5.8685 0.0154

RANK 1 1 0.9359 0.2453 14.5606 0.0001
RANK 2 1 0.5205 0.2109 6.0904 0.0136
RANK 3 1 0.1237 0.2240 0.3053 0.5806
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Probit Interpretation

I The probit regression coefficients give the change in the probit
index, also called the Z score, for a unit increase in the
regressor.

I For a unit change in GRE, the Z score increases by 0.001.

I For a unit change in GPA, the Z score increases by 0.478.

I The coefficients for rank categories have a different
interpretation. Here, having attended an undergraduate
institution with a rank of 1, versus an institution with a rank
of 4, increases the Z score by 0.936 (Rank 4 is the base
category).
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THANK YOU
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