Indira Gandhi Institute Of Research Development ECONOMETRICS II

SEEMINGLY UNRELATED REGRESSION

INSTRUCTOR :
MR. SUBRATA SARKAR
PRESENTED BY
ANOMITA GHOSH
NITIN KUMAR SINHA
SUDIPTA GHOSH
UDAYAN RATHORE

Structure of the Presentation

- Introduction and Motivation
- Illustration via a Model
- Estimation of the model
- Results and Interpretation
- First Order Autoregressive Process and Estimation
- SUR with Singular variance matrices

INTRODUCTION

- The SUR system was first proposed by Arnold Zellner in 1962
- It represents individual relationships $\rightarrow_{\text {several regression }}$ equations and possibility of different number of explanatory variables for each equation (Seemingly Unrelated)
- The system of equations \rightarrow related through the correlation in error terms
- Source of correlation in error terms \rightarrow shocks, government policy etc

MOTIVATION

- Two main motivations for SUR, Roger Moon, et al (2006):
- Efficiency gains with combined information set from the system of equations
- Impose/test restrictions on parameters of different equations
- The system has various advantages:
- Simple specification of model
- Saves degree of freedoms
- Wide applications: Effect of government policy, global macroeconomic downturn/upswing etc

BASIC SUR MODEL: ILLUSTRATION

- 3 firms from automotive sector: Ashok Leyland, Mahindra and Mahindra and Tata Motors Limited
- Investment $=\mathrm{f}($ Market Capitalization, net fixed assets $)$
- $\mathrm{I}_{\mathrm{it}}=\mathcal{B}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{it} 1}+\mathcal{B}_{\mathrm{i} 2} \mathrm{X}_{\mathrm{it} 2}+\epsilon_{\mathrm{it}} \quad \mathrm{i}=1,2,3$ and $\mathrm{t}=1995-2012$
- $\mathrm{X}_{\mathrm{it}}=$ Market Capitalization
- $\mathrm{X}_{\mathrm{it} 2}=$ Net fixed assets
- Same segment \rightarrow government policy, sector specific shocks (input prices example: steel) should affect all 3 companies over the same period (Contemporaneous Correlation)
- Data sources: prowess 4.12, Moneycontrol.com, National Stock Exchange (for data on number of outstanding shares and closing prices)

Estimation Assumptions

- Explanatory Variables
- Non stochastic and fixed
- Full Rank (Invertibility)
- Error Terms
- $E\left(\epsilon_{i t}\right)=0$ for all i, t
- $E\left(\epsilon_{\mathrm{it}} \epsilon_{\mathrm{is}}\right)=\sigma_{\mathrm{ii}}$ if $\mathrm{t}=\mathrm{s}, \mathrm{i}=1,2,3$

$$
=0 \text { if } \mathrm{t} \neq \mathrm{s}
$$

- $E\left(\epsilon_{i t} \epsilon_{j \mathrm{~s}}\right)=\sigma_{\mathrm{ij}}$ if $\mathrm{t}=\mathrm{s}$ for $\mathrm{i} \neq \mathrm{j}$
$=0$ if $\mathrm{t} \neq \mathrm{s}$ for $\mathrm{i} \neq \mathrm{j}$
- Explanatory Variables \& ErrorTerms
- No correlation between the two \rightarrow Ensures Consistent $\beta_{\text {OLS }}^{\wedge}$
- Note: Possibility of first order autoregressive Process

Estimation: Points to Remember

Sss	${ }_{\substack{\text { Homoscedsssitity } \\ \text { willin individual }}}$		${ }^{\text {Contemporan }}$	3 LU
(a)	\checkmark	\times	\times	$\beta_{\text {Bos }}$
(b)	\checkmark	\checkmark	\times	
(c)	\checkmark	\checkmark	\checkmark	$\beta_{\text {cas }}$

Relative Efficiency

Sample Size

Results: Ashok Leyland

Variables	$\boldsymbol{\beta}_{\text {OLS }}^{\wedge}$ (a)	$\boldsymbol{\beta}_{\text {GLS }}^{\wedge}$ \leftrightarrow OLS	Standard Error (b)	$\boldsymbol{\beta}_{\text {GLS }}(\mathbf{c})$	Standard Error (c)
Intercept	-1650.7	-1650.7	617.2134	-1993.97	599.426
MktCap	0.08389	0.08389	0.024884	0.080975^{*}	0.019980
NFA	0.18398	0.18398	0.045824	0.212450 *	0.039274

Results: Mahindra and Mahindra

Variables	$\boldsymbol{\beta}_{\text {OLS }}^{\wedge}$ (a)	$\boldsymbol{\beta}_{\text {GLS }}^{\wedge} \leftrightarrow \boldsymbol{\beta}_{\text {OLS }}^{\wedge}$ (b)	Standard Error (b)	$\boldsymbol{\beta}_{\text {GLS }}(\mathbf{c})$	Standard Error (c)
Intercept	-4540.26	-4540.26	2466.456	-2828.49	2395.17
MktCap	0.122712	0.122712	0.026082	0.144008^{*}	0.022897
NFA	1.341665	1.341665	0.243745	1.085418^{*}	0.215314

Results: Tata Motors

Variables	$\boldsymbol{\beta}_{\text {OLS }}^{\wedge}$ (a)	$\boldsymbol{\beta}_{\text {GLS }}^{\wedge}$ $\leftrightarrow \boldsymbol{\beta}_{\text {OLS }}(\mathbf{b})$	Standard Error (b)	$\boldsymbol{\beta}_{\text {GLS }}(\mathbf{c})$	Standard Error (c)
Intercept	-38640.5	-38640.5	13368.10	-32791.8	12980.3
MktCap	-0.11165	-0.11165	0.075409	-0.03413	0.058701
NFA	2.66927	2.669274	0.391279	2.241070^{\star}	0.329630

Commands

- proc syslin data=sasuser.firms; aleyland: model $\mathrm{i} 1=$ mtcap1 nfa1; mahindra: model i2=mtcap2 nfa1; tata: model i3=mtcap3 nfa3;

run;

- proc syslin data=sasuser.firms sdiag sur;
aleyland: model $\mathrm{i} 1=$ mtcap1 nfa1;
mahindra: model i2=mtcap2 nfa1;
tata: model i3=mtcap3 nfa3;
run;

Commands

- proc syslin data=sasuser.firms sur;
aleyland: model i1 =mtcap1 nfa1;
mahindra: model i2=mtcap2 nfa1;
tata: model i3=mtcap3 nfa3;
run;
- proc syslin data=sasuser.firms itsur;
aleyland: model $\mathrm{i} 1=$ mtcap1 nfa1;
mahindra: model i2=mtcap2 nfa1;
tata: model i3=mtcap3 nfa3;
run;

INTERPRETATION

- As market capitalization increases, both Ashok Leyland (AL) and Mahindra (M) invest more whereas Tata (T) invests less which is counterintuitive
- The coefficients of Al and M are significant at 5% level coefficient of T coefficient is insignificant at even 10% level
- As net fixed assets increases, investment by all 3 firms increase, all their coefficients are significant at 5\% and 1\% level.

Caveats

- $\beta_{\text {OLS }}$ must be consistent for running iterations and deducing $\beta_{\text {FGLS }}$
- Prerequisite: no correlation between the error term and explanatory variables
- No endogenity in explanatory variables
- A possible case for first order autoregressive process in error terms

First Order Autoregressive Process

- $\epsilon_{i t}=\rho_{\mathrm{i}} \epsilon_{\mathrm{i}(\mathrm{t}-1)}+\mathrm{v}_{\mathrm{it}}$ where $\left|\rho_{\mathrm{i}}\right|<1$
- $\mathrm{E}\left(\epsilon_{\mathrm{i}} \epsilon_{\mathrm{j}}{ }^{\prime}\right)=\Omega_{\mathrm{ij}}=\sigma_{\mathrm{ij}}\left(1 / 1-\rho_{\mathrm{i}} \rho_{\mathrm{j}}\right) * \mathrm{~B}$
- $\epsilon_{\mathrm{it}}=\mathrm{v}_{\mathrm{it}}+\rho_{\mathrm{i}} \epsilon_{\mathrm{i}(\mathrm{t}-1)}=\mathrm{v}_{\mathrm{it}}+\rho_{\mathrm{i}}\left[\mathrm{v}_{\mathrm{i}(\mathrm{t}-1)}+\rho_{\mathrm{i}} \epsilon_{\mathrm{i}(\mathrm{t}-2)}\right]$ (so on and so forth)
- $\epsilon_{i t}=v_{i t}+\rho_{i} v_{i(t-1)}+\rho_{i}^{2} v_{i(t-2)}+\ldots \ldots \ldots+\rho_{\mathrm{i}}^{\mathrm{s}} \mathrm{v}_{\mathrm{i}(\mathrm{t}-\mathrm{s})}+\rho_{\mathrm{i}}^{\mathrm{s}+1} \mathrm{v}_{\mathrm{i}(\mathrm{t}-\mathrm{s}-1)}+\ldots$
- $\mathrm{B}=$

Estimation

- Use $\beta_{\text {GLS }}=\left(X^{\prime} \Omega^{-1} \mathrm{X}\right) \mathrm{X}^{\prime} \Omega^{-1} \mathrm{Y}$
- \sum unknown so go for FGLS and iterate
- Estimate β_{i} and $\beta_{\mathrm{j}}(\mathrm{OLS}) \rightarrow$ Estimate ϵ_{i} and $\epsilon_{\mathrm{j}} \rightarrow$ estimate ρ_{i}, $\rho_{\mathrm{j}} \rightarrow$ estimate $\mathrm{V}_{\mathrm{it}}, \mathrm{V}_{\mathrm{jt}} \rightarrow$ estimate of σ_{ij}
- Now we get Ω and obtain $\beta_{\text {FGLS }}^{\wedge}$ and set to limit

SUR with Singular Variance Matrices

- General assumption:Variance- Covariance matrix of $u_{i}(\Omega)$ is not singular.
- The above assumption not always true in applications of consumer and producer theory because of additivity constraints
- Example
- $\mathrm{s}_{\mathrm{iK}}=\mathrm{B}_{10}+\mathrm{B}_{11} \log \mathrm{p}_{\mathrm{iK}}+\mathrm{B}_{12} \log \mathrm{p}_{\mathrm{iL}}+\mathrm{B}_{13} \log \mathrm{p}_{\mathrm{i} \mathrm{M}}+\mathrm{u}_{\mathrm{ik}}$
- $s_{\mathrm{iL}}=\mathrm{B}_{20}+\mathrm{B}_{12} \log \mathrm{p}_{\mathrm{iK}}+\mathrm{B}_{22} \log \mathrm{p}_{\mathrm{iL}}+\mathrm{B}_{23} \log \mathrm{p}_{\mathrm{im}}+\mathrm{u}_{\mathrm{iL}}$
- $s_{\mathrm{im}}=\mathrm{B}_{30}+\mathrm{B}_{13} \log \mathrm{p}_{\mathrm{iK}}+\mathrm{B}_{23} \log \mathrm{p}_{\mathrm{iL}}+\mathrm{B}_{33} \log \mathrm{p}_{\mathrm{iM}}+\mathrm{u}_{\mathrm{iM}}$
- where the symmetry restrictions from production theory have been imposed
- We assume that $\mathrm{E}\left(\mathrm{u}_{\mathrm{i}} / \mathrm{p}_{\mathrm{i}}\right)=0, \mathrm{u}_{\mathrm{i}}=\left(\mathrm{u}_{\mathrm{Ik}}, \mathrm{u}_{\mathrm{iL}}, \mathrm{u}_{\mathrm{iM}}\right), \mathrm{p}_{\mathrm{i}}=\left(\mathrm{p}_{\mathrm{iK}}, \mathrm{p}_{\mathrm{iL}}, \mathrm{p}_{\mathrm{iM}}\right)$
- $\mathrm{B}_{10}+\mathrm{B}_{20}+\mathrm{B}_{30}=1$
- $\mathrm{B}_{11}+\mathrm{B}_{12}+\mathrm{B}_{13}=0$
- $\mathrm{B}_{12}+\mathrm{B}_{22}+\mathrm{B}_{23}=0$
- $\mathrm{B}_{13}+\mathrm{B}_{23}+\mathrm{B}_{33}=0$
- $\mathrm{u}_{\mathrm{iK}}+\mathrm{u}_{\mathrm{iL}}+\mathrm{u}_{\mathrm{iM}}=0$
- $\mathrm{B}_{13}=-\mathrm{B}_{11}-\mathrm{B}_{12}$
- $\mathrm{B}_{23}=-\mathrm{B}_{12}-\mathrm{B}_{22}$
- $\mathrm{s}_{\mathrm{iK}}=\mathrm{B}_{10}+\mathrm{B}_{11} \log \left(\mathrm{p}_{\mathrm{iK}} / \mathrm{p}_{\mathrm{iM}}\right)+\mathrm{B}_{12} \log \left(\mathrm{p}_{\mathrm{iL}} / \mathrm{p}_{\mathrm{iM}}\right)+\mathrm{u}_{\mathrm{Ik}}$
- $\mathrm{s}_{\mathrm{iL}}=\mathrm{B}_{20}+\mathrm{B}_{12} \log \left(\mathrm{p}_{\mathrm{iK}} / \mathrm{p}_{\mathrm{iM}}\right)+\mathrm{B}_{22} \log \left(\mathrm{p}_{\mathrm{iL}} / \mathrm{p}_{\mathrm{iM}}\right)+\mathrm{u}_{\mathrm{iL}}$
- Suppose we assume $E\left(u_{i g} / p_{i K}, p_{i L}, p_{i M}\right)=0 \quad g=K, L$
- OLS and FGLS estimators are consistent
- System OLS is not OLS equation
- If $\operatorname{Var}\left(\mathrm{u}_{\mathrm{i}} / \mathrm{p}_{\mathrm{i}}\right)$ constant, FGLS asymptotically efficient, else use robust variance-covariance matrix estimator for FGLS

Thank You

