Indira Gandhi Institute Of Research Development ECONOMETRICS II

SEEMINGLY UNRELATED REGRESSION

INSTRUCTOR:

MR. SUBRATA SARKAR

PRESENTED BY
ANOMITA GHOSH
NITIN KUMAR SINHA
SUDIPTA GHOSH
UDAYAN RATHORE

Structure of the Presentation

- Introduction and Motivation
- Illustration via a Model
- Estimation of the model
- Results and Interpretation
- First Order Autoregressive Process and Estimation
- SUR with Singular variance matrices

INTRODUCTION

- The SUR system was first proposed by Arnold Zellner in 1962
- It represents individual relationships → several regression equations and possibility of different number of explanatory variables for each equation (Seemingly Unrelated)
- The system of equations → related through the correlation in error terms
- Source of correlation in error terms \rightarrow shocks, government policy etc

MOTIVATION

- Two main motivations for SUR, Roger Moon, et al (2006):
- Efficiency gains with combined information set from the system of equations
- Impose/test restrictions on parameters of different equations
- The system has various advantages:
- Simple specification of model
- Saves degree of freedoms
- Wide applications: Effect of government policy, global macroeconomic downturn/upswing etc

BASIC SUR MODEL: ILLUSTRATION

- 3 firms from automotive sector: Ashok Leyland, Mahindra and Mahindra and Tata Motors Limited
- Investment = f (Market Capitalization, net fixed assets)
- $I_{it} = \mathcal{B}_{i1} X_{it1} + \mathcal{B}_{i2} X_{it2} + \epsilon_{it}$ i= 1,2,3 and t=1995-2012
- $X_{it} = Market Capitalization$
- X_{it2} = Net fixed assets
- Same segment \rightarrow government policy, sector specific shocks (input prices example: steel) should affect all 3 companies over the same period (Contemporaneous Correlation)
- Data sources: prowess 4.12, Moneycontrol.com, National Stock Exchange (for data on number of outstanding shares and closing prices)

Estimation Assumptions

- Explanatory Variables
- Non stochastic and fixed
- Full Rank (Invertibility)
- Error Terms
- $E(\epsilon_{it}) = 0$ for all i,t
- $E(\varepsilon_{it} \varepsilon_{is}) = \sigma_{ii}$ if t=s, i=1,2,3= 0 if $t\neq s$
- $E(\varepsilon_{it} \varepsilon_{js}) = \sigma ij \text{ if } t=s \text{ for } i\neq j$ = 0 if $t\neq s \text{ for } i\neq j$
- Explanatory Variables & Error Terms
- No correlation between the two \rightarrow Ensures Consistent $\beta^{\hat{}}_{OLS}$
- Note: Possibility of first order autoregressive Process

Estimation: Points to Remember

Cases	Homoscedasticity within individual	Hetroscedasticity across individuals	Contemporaneous correlation	BLUE
(a)	✓	×	×	$oldsymbol{eta}^{'}_{ m OLS}$
(b)	✓	✓	×	$\beta^{'}_{GLS}_{(boils to)}$
(c)	✓	✓	✓	$\beta^{'}_{GLS}$

Relative Efficiency

Results: Ashok Leyland commands.docx

Variables	β [^] _{OLS} (a)	$\beta_{GLS}^{'} \leftrightarrow \beta_{OLS}^{'} (b)$	Standard Error (b)	β [^] _{GLS} (c)	Standard Error (c)
Intercept	-1650.7	-1650.7	617.2134	-1993.97	599.426
MktCap	0.08389	0.08389	0.024884	0.080975*	0.019980
NFA	0.18398	0.18398	0.045824	0.212450 *	0.039274

Results: Mahindra and Mahindra

Variables	β [^] _{OLS} (a)	$\beta_{GLS}^{\prime} \leftrightarrow \beta_{OLS}^{\prime}$ (b)	Standard Error (b)	β [*] _{GLS} (c)	Standard Error (c)
Intercept	-4540.26	-4540.26	2466.456	-2828.49	2395.17
MktCap	0.122712	0.122712	0.026082	0.144008*	0.022897
NFA	1.341665	1.341665	0.243745	1.085418*	0.215314

Results: Tata Motors

Variables	β [^] _{OLS} (a)	$\beta_{GLS}^{\prime} \leftrightarrow \beta_{OLS} (b)$	Standard Error (b)	β [*] _{GLS} (c)	Standard Error (c)
Intercept	-38640.5	-38640.5	13368.10	-32791.8	12980.3
MktCap	-0.11165	-0.11165	0.075409	-0.03413	0.058701
NFA	2.66927	2.669274	0.391279	2.241070*	0.329630

Commands

```
• proc syslin data=sasuser.firms; aleyland: model i1=mtcap1 nfa1; mahindra: model i2=mtcap2 nfa1; tata: model i3=mtcap3 nfa3; run;
```

• proc syslin data=sasuser.firms sdiag sur; aleyland: model i1=mtcap1 nfa1; mahindra: model i2=mtcap2 nfa1; tata: model i3=mtcap3 nfa3; run;

Commands

```
• proc syslin data=sasuser.firms sur; aleyland: model i1=mtcap1 nfa1; mahindra: model i2=mtcap2 nfa1; tata: model i3=mtcap3 nfa3; run;
```

• **proc syslin** data=sasuser.firms itsur; aleyland: model i1=mtcap1 nfa1; mahindra: model i2=mtcap2 nfa1; tata: model i3=mtcap3 nfa3; **run**;

INTERPRETATION

- As market capitalization increases, both Ashok Leyland (AL) and Mahindra (M) invest more whereas Tata (T) invests less which is counterintuitive
- The coefficients of Al and M are significant at 5% level coefficient of T coefficient is insignificant at even 10% level
- As net fixed assets increases, investment by all 3 firms increase, all their coefficients are significant at 5% and 1% level.

Caveats

- Prerequisite: no correlation between the error term and explanatory variables
- No endogenity in explanatory variables
- A possible case for first order autoregressive process in error terms

First Order Autoregressive Process

- $\epsilon_{it} = \rho_i \epsilon_{i(t-1)} + v_{it}$ where $\rho_i < 1$
- $E(\epsilon_i \epsilon_j) = \Omega_{ij} = \sigma_{ij} (1/1 \rho_i \rho_j) *B$
- $\bullet \quad \varepsilon_{it} = v_{it} + \rho_i \, \varepsilon_{i(t\text{-}1)} = v_{it} + \rho_i \, [v_{i(t\text{-}1)} + \rho_i \, \varepsilon_{i(t\text{-}2)}] \, (\text{so on and so forth})$
- $\bullet \ \ \varepsilon_{it} = \ v_{it} + \rho_i \ v_{i(t\text{-}1)} + \rho_i^2 \ v_{\ i(t\text{-}2)} \ + \dots + \rho_i^s \ v_{\ i(t\text{-}s)} + \rho_i^{s+1} \ v_{\ i(t\text{-}s-1)} \ + \dots$

• $B = \begin{bmatrix} 1 & \rho_{j} & & & & \rho_{j}^{T-1} \\ \rho_{i} & 1 & \rho_{j} & & & \rho_{j}^{T-2} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Estimation

- Use $\beta'_{GLS} = (X' \Omega^{-1} X) X' \Omega^{-1} Y$
- \sum unknown so go for FGLS and iterate
- Estimate β_i and β_j (OLS) \rightarrow Estimate ϵ_i and $\epsilon_j \rightarrow$ estimate $\rho_{i,j}$ \rightarrow estimate V_{it} , $V_{jt} \rightarrow$ estimate of σ_{ij}
- \bullet Now we get Ω and obtain $\beta^{'}_{\ FGLS}$ and set to limit

SUR with Singular Variance Matrices

- \bullet General assumption: Variance- Covariance matrix of $u_{i}\left(\Omega\right)$ is not singular.
- The above assumption not always true in applications of consumer and producer theory because of additivity constraints
- Example
- $s_{iK} = B_{10} + B_{11} \log p_{iK} + B_{12} \log p_{iL} + B_{13} \log p_{iM} + u_{Ik}$
- $s_{iL} = B_{20} + B_{12} \log p_{iK} + B_{22} \log p_{iL} + B_{23} \log p_{iM} + u_{iL}$
- $s_{iM} = B_{30} + B_{13} \log p_{iK} + B_{23} \log p_{iL} + B_{33} \log p_{iM} + u_{iM}$
- where the symmetry restrictions from production theory have been imposed

• We assume that $E(u_i/p_i)=0$, $u_i=(u_{Ik_i}u_{iL_i}u_{iM})$, $p_i=(p_{iK_i},p_{iL_i},p_{iM_i})$

•
$$B_{10} + B_{20} + B_{30} = 1$$

•
$$B_{11} + B_{12} + B_{13} = 0$$

•
$$B_{12} + B_{22} + B_{23} = 0$$

•
$$B_{13} + B_{23} + B_{33} = 0$$

•
$$u_{iK} + u_{iL} + u_{iM} = 0$$

•
$$B_{13} = -B_{11} - B_{12}$$

•
$$B_{23} = -B_{12} - B_{22}$$

•
$$s_{iK} = B_{10} + B_{11} \log (p_{iK}/p_{iM}) + B_{12} \log (p_{iL}/p_{iM}) + u_{Ik}$$

•
$$s_{iL} = B_{20} + B_{12} \log (p_{iK}/p_{iM}) + B_{22} \log (p_{iL}/p_{iM}) + u_{iL}$$

- Suppose we assume E (u_{ig}/p_{iK} , p_{iL} , p_{iM}) =0 g=K,L
- OLS and FGLS estimators are consistent
- System OLS is not OLS equation
- If $Var(u_i/p_i)$ constant, FGLS asymptotically efficient, else use robust variance-covariance matrix estimator for FGLS

Thank You